煤炭中温活化碳共价键解聚机理

时间:2023-08-17 20:30:03 来源:网友投稿

王明月,张思源,周 丽,任强强

(1.中国科学院 工程热物理研究所,北京 100190;
2.中国科学院大学,北京 100049)

我国是世界上最大的能源消费国,煤炭作为我国的基础能源和工业生产原料,是可实现清洁高效利用的最经济、最安全的矿产资源。我国能源资源禀赋决定煤炭作为主体能源在未来一段时期内不会改变,在国家能源供应中发挥重要的基础和兜底保障作用[1]。目前煤炭产量的80%用于直接燃烧,现有技术手段主要依靠尾气净化实现煤炭燃烧超低排放。近年来,随可再生能源发电比例不断提高,火、热、风、光等高度耦合的多能互补能源结构逐渐形成,煤电作为基础调节能源,承担着负荷调节的关键角色[2],而燃煤锅炉低负荷运行下的稳燃问题兼顾清洁燃烧,是机组灵活调峰过程中亟需解决的关键问题[3],需创新燃烧方式。笔者提出从煤炭原料与燃烧双重属性出发,通过中温活化反应,煤炭与气体(CO2、水蒸气、O2等)发生活化反应,煤炭中多环芳烃碳键发生断裂,形成更多活性位点,从而增强反应活性。通过活化手段所得热半焦的理化特性发生变化,颗粒粒径明显减小,比表面积增加,反应性更好,同时得到CO、H2等产物,可极大提高燃煤锅炉的变负荷速率,提高低负荷稳燃能力[4-7]。

煤炭活化处理后,产生半焦的特性随反应条件不同而存在差异。目前国内外对增强煤焦反应活性过程进行大量研究。LI等[8]研究表明,在500~700 ℃快速热解中,半焦反应性随温度升高而增强;
700~900 ℃快速热解中,半焦反应性随温度升高而减弱。TREMEL等[9]、TCHAPDA等[10]、PERALTA等[11]研究表明,1 200~1 600 ℃制焦温度下,半焦反应性随制焦温度升高而降低。

笔者研究了煤粉中温活化反应过程中温度和气氛对煤焦化学结构和表面官能团演变的影响,分析原煤和活化半焦中C、H、O三种主要元素共价键变化,并在此基础上探讨中温活化的机理。采用拉曼光谱对煤焦碳架结构进行表征,采用XPS检测C和O的表面官能团,固态核磁共振表征碳共价键。将3种测量方法互相验证,提高结果的可靠性,从微观层面表征半焦化学结构,分析中温活化反应机理。

1.1 试验样品

试验用煤为神木煤,煤样工业分析和元素分析见表1。采用筛分法获得粒径0~100 μm煤样,置于105 ℃干燥箱中干燥24 h后,放入装有变色硅胶的干燥器中保存待用。

表1 神木烟煤的工业分析和元素分析Table 1 Proximate and ultimate analysis of Shenmu coal

1.2 试验装置及方法

高温立式管式炉试验系统主要由加热炉、石英管、配气系统、温控系统组成。炉体由耐高温材料组成(图1),外壳由钢板包覆,刚玉管尺寸为φ80 mm×5 mm,两端采用快开法兰连接,用耐高温橡胶密封圈密封。热电偶为B-型热电偶,加热炉允许使用温度为0~1 600 ℃。炉膛温度稳定后,流量1 L/min的N2从石英管入口进入反应器。将20 g煤样放入石英管,并将石英管放入管式炉中,迅速连接好进气管与出气管。试验结束后,关闭管式炉电源,将气氛迅速切换成N2冷却降温,待样品冷却至室温后取出密封保存。

图1 管式炉试验系统示意Fig.1 Tube furnace experiment system

待炉膛温度稳定后,将装有20 g煤样的石英管快速放入管式炉并连接进气管和出气管,切换相应气氛,流量为1 L/min,加热30 min后结束试验,通过改变气氛获得不同气氛下活化半焦。将CO2气氛下中温活化温度分别为600、700、800、900 ℃时制备的煤焦分别记为C-600、C-700、C-800与C-900;
将水蒸气气氛下中温活化温度分别为600、700、800、900 ℃制备的煤焦分别记为H-600、H-700、H-800与H-900。将N2气氛下中温活化温度分别为600、700、800、900 ℃制备的煤焦分别记为N-600、N-700、N-800与N-900。将各工况得到的样品在105 ℃下干燥8 h后取出放入干燥皿中保存,用于拉曼光谱和XPS测试。

拉曼光谱测试在LabRAM HR Evolution高分辨拉曼光谱仪上进行,使用单晶硅片,激发波长为532 nm全功率,光谱分辨率为1 cm-1,曝光时间为100 s,累加次数3次,波数为800~2 000 cm-1,相关曲线采用peakfit软件进行拟合。XPS测试采用Al K Alpha光源,光斑为400 μm,扫描通能为30 eV,步长为0.1 eV,相关曲线采用XPSpeak软件拟合。

13C-NMR测试前,需对样品进行盐酸-氢氟酸脱灰处理,具体方法[20]为:称取4 g样品于离心管中,加入6 mol/L盐酸40 mL充分混合后,将离心管置于60 ℃恒温水浴振荡器中震荡12 h,后取出离心管并过滤;
在经盐酸处理后的样品中缓慢加入质量分数40%的氢氟酸40 mL,按上述方法重复加热震荡8 h,并用滤纸过滤;
处理后样品中加入6 mol/L盐酸40 mL充分混合后,按上述方法重复加热震荡12 h,并用滤纸过滤;
最后用去离子水洗涤酸处理过的样品,直至滤液pH为7。将酸处理过的样品在80 ℃下真空干燥24 h,得到各工况脱灰后样品,用于13C-NMR测试。

13C-NMR测试在布鲁克400光谱仪上进行,干燥粉煤样品在氧化锆转子中以12 kHz转速旋转,采用CPMAS方法操作。用MestReNova软件进行曲线拟合分析,根据试验曲线与拟合曲线的方差调整拟合的13C谱。

2.1 碳结构变化

拉曼光谱主要应用于材料的分子结构分析,对碳材料的有序程度十分敏感,被广泛应用于表征碳质材料的结构特征。原煤的拉曼光谱曲线拟合如图2所示,主要包括1个Gaussian峰(用于D3带)和4个Lorentzian峰(用于G、D1、D2、D4带)。G带(1 590 cm-1)由石墨结构中芳香层架构伸缩振动引起,代表煤样中石墨状微晶碳结构,属于反应性较低的稳定结构;
4个不同的D带分别代表煤中不同的缺陷或无序结构类型,其中D1带(1 350 cm-1)对应层内缺陷和杂原子导致石墨化晶格的振动,D2带(1 620 cm-1)对应相邻石墨碳层之间的缺陷,D3带(1 530 cm-1)对应煤样中sp3-sp2混合形式结合的无定形碳,D4带(1 150 cm-1)对应碳层边缘富含sp3杂化形式的碳结构,缺陷结构中D3带和D4带属于反应活性较高的活性结构[21-23]。

图2 煤的拉曼光谱Fig.2 Raman spectra of raw coal

拉曼光谱的曲线形状及不同位置的强度能体现煤不同结构,可用不同光谱带的相对面积比分析碳结构特征变化。不同光谱带面积之比含义不同[24-25],其中IG/IAll可表征煤样中石墨化程度,而I(D3+D4)/IG可表征煤样碳架结构中活性位比例[23]。神木烟煤经中温活化前后的I(D3+D4)/IG变化如图3所示。

图3 活化前后的I(D3+D4)/IG变化Fig.3 Variation of I(D3+D4)/IG before and after activation

由图3可知,经中温活化的煤焦I(D3+D4)/IG整体高于原煤,说明经中温活化后,煤焦反应位点增多。随温度升高,N2气氛下样品活性位点先增加后减少,这是由于升高温度会促使煤焦热解,官能团脱落产生缺陷。继续升高温度,官能团脱落后,活性位点降低,因此需温度和气氛耦合达到活化目的。利用CO2和水蒸气进行中温活化后活性位点数量均显著高于N2热解后煤焦活性位点数量,其中CO2活化效果在800 ℃后显著优于N2热解,初步说明CO2在800 ℃开始参与活化反应;
水蒸气活化后煤焦的活性位点数量总体随温度升高而增加,说明600 ℃下水蒸气开始参与活化反应,且活化效果随温度升高而增加。900 ℃下,芳香环缩聚加剧,CO2气氛活化效果小于芳香环缩聚程度,活性位点大大减少,而水蒸气活化产生的氢元素对石墨化程度有抑制作用,活性位点增加。

活化前后IG/IAll变化如图4所示。由图4可知,不同气氛处理得到的煤焦IG/IAll整体在0.14~0.24,因此气氛对石墨化程度的影响变化不大。经CO2活化后得到样品的IG/IAll变化不大,说明其整体石墨化程度较原煤变化不大;
但图3中I(D3+D4)/IG显著上升,这可能是由于随温度升高,层内缺陷、杂原子及相邻石墨碳层之间的缺陷减少,而CO2活化主要通过将碳层边缘反应活性较低的sp2杂化结构转化为sp3-sp2混合形式结合的无定形碳或富含sp3杂化的碳结构,与前人研究结果一致[26],因此整体石墨化程度变化不大。而水蒸气活化后的煤焦活性随活化温度不同差异较大,600 ℃时IG/IAll由0.22降至0.14,I(D3+D4)/IG升高范围不大,说明水蒸气解离出的氢自由基对石墨化进程有一定抑制作用;
700、800 ℃,石墨化程度加剧,层内缺陷及层间缺陷减少,但碳层边缘反应活性较高的碳结构增加;
900 ℃时水蒸气破坏芳香环效果大于芳香环缩合,因此石墨化程度降低,与图3一致。

图4 活化前后IG/IAll变化Fig.4 Variation of IG/IAll before and after activation

2.2 碳氧官能团变化

煤中碳有碳氢化合物(芳烃或芳香取代烷烃)、羟基或醚、羰基和羧基4种状态。不同形态碳和氧的结合能[27-28]见表2、3。

表2 不同碳形态的结合能[27-28]Table 2 Binding energy of different carbon morphologies[27-28]

表3 不同氧形态的结合能[27-28]Table 3 Binding energy of different oxygen morphologies[27-28]

将曲线解析过程中使用的单个峰和模拟总光谱与实际光谱进行对比,基于结合能对碳的XPS结果进行峰值拟合。XPS结合能以285 eV C 1s为参考,以消除电荷效应的影响[22]。为获得C 1s、O 1s 附近官能团的相对数量,采用高斯-洛伦兹混合线型对光谱进行拟合,结果如图5所示。

图5 原煤的XPS C 1s谱图和O 1s谱图Fig.5 XPS C 1s spectrum and O 1s spectrum of raw coal

通过计算各峰面积相对比例,经CO2气氛中温活化后得到煤焦样品的含氧官能团比例如图6所示。可知碳氢化合物是原煤和活化煤焦占比最多的结构。600 ℃时,煤焦含碳官能团组成与原煤相差不大,碳氢化合物略上升,此时主要发生侧链官能团热解脱落,因此侧链官能团占比不大;
700 ℃时,碳氢化合物含量几乎不变,羟基或醚键减少,羰基占比增加10%,因此推测期间羟基或醚在CO2气氛作用下转变为羰基或羧基;
800 ℃开始,煤焦碳氢化合物质量分数下降17个百分点,说明800 ℃时CO2开始与芳香环中碳发生反应,形成大量羟基或醚,部分羟基或醚转变为羰基或羧基;
900 ℃时,碳氢化合物含量不变。原煤羰基和羧基占比为2%,经过800和900 ℃中温活化处理后,煤焦的羰基和羧基占比增至22%。结合图3可知,活性位点增加与煤中碳氢化合物转变为含氧结构有关。

图6 CO2气氛下活化半焦含碳官能团比例Fig.6 Ratio of carbon-containing functional groups in activated char under CO2

通过计算各峰面积相对比例,经CO2气氛中温活化后得到煤焦样品的含氧官能团比例结果如图7所示。由于氧形态受C、N、S和矿质元素影响,O 1s 谱的峰拟合不能显示碳氧有机官能团的变化,仅用于表面氧原子的定量分析[27]。

图7 CO2气氛下活化半焦含氧官能团比例Fig.7 Ratio of oxygen-containing functional groups in activated char under CO2

水蒸气气氛下活化半焦含碳官能团比例如图8所示,可知无机氧含量很少,可近似认为样品中不存在无机氧。吸附氧含量主要来自表面吸附的水蒸气。700~900 ℃,羰基和羧基总量均显著上升,这与图7含碳官能团比例结果一致。

图8 水蒸气气氛下活化半焦含碳官能团比例Fig.8 Ratio of carbon-containing functional groups in activated char under vapor

利用水蒸气活化与CO2活化有所差别。600 ℃时,与CO2活化相似,碳氢化合物含量与原煤相比略升高,说明水蒸气在600 ℃时还未与煤焦发生反应;
700 ℃开始,水蒸气参与反应,碳氢化合物逐渐减少,转变为羧基和羰基,与拉曼光谱显示活性位点数量变化趋势吻合。活性位点是可发生化学反应的基团,化学位点少,发生有效碰撞几率少。据此推测,羰基和羧基形成的前身是活性位点的重要组成部分。900 ℃时,羧基占比上升至22%,碳氢化合物占比降至65%,说明与CO2活化不同,900 ℃时水蒸气可继续解聚芳香结构,这可能与氢含量有关,高温下水蒸气解离出大量氢自由基,易与芳香桥碳结合,从而抑制芳香环缩合。

水蒸气气氛下活化半焦含氧官能团比例如图9所示,可知吸附氧含量较高,这是由于水蒸气气氛下吸附水蒸气较多。800和900 ℃下水蒸气活化后羰基和羧基占比高于原煤,这与前述含碳官能团占比和拉曼光谱结果相互验证。

图9 水蒸气气氛下活化半焦含氧官能团比例Fig.9 Ratio of oxygen-containing functional groups in activated char under vapor

2.3 C—H—O共价键变化

利用13C-NMR技术对样品不同碳进行识别,13C-NMR谱图根据化学位移可划分为3个峰:第1个是化学位移在0~60的脂碳峰;
第2个是化学位移在90~165的芳碳峰;
第3个是化学位移在200左右的羰基(羧基)碳峰。

不同碳官能团可用不同化学位移表示[18,29-30]。煤中化学位移及分配见表4。为区分不同碳官能团,获得煤焦详细化学结构参数,根据13C-NMR谱图中碳化学位移归属,利用MestReNova软件对各工况谱图进行分峰拟合和积分,如图10所示,得到样品中各种官能团峰位及相对百分含量,结构参数见表5。

表4 含碳官能团的化学位移[29,31]Table 4 Assignment of carbon functional groups for coals[29,31]

续表

图10 原煤13C-NMR曲线拟合Fig.10 Curve-fitted 13C-NMR spectra of different raw coal

不同工况下煤中不同类型碳相对含量有明显差异,如活化后羰基和羧基碳含量明显上升。根据13C-NMR谱图曲线拟合结果计算得到产物的化学结构参数,结果见表6。

表5 煤样13C-NMR谱曲线拟合结果Table 5 Results of curve-fitted 13C-NMR spectra of coal samples

表6 煤样13C-NMR结构参数Table 6 Structural parameters from 13C-NMR spectra of coal samples

续表

结合3种检测结果进行分析。拉曼光谱的检测表明,CO2和水蒸气均对增加水蒸气活性位点有促进作用,结合XPS分析,反应活性增大的原因可能与羰基和羧基含量增加有关。由此,笔者认为CO2/水蒸气中温活化通过与煤焦分子结合形成羰基或羧基,在羰基或羧基分子影响下相连的碳键相应削弱断裂,从而破坏芳香环,产生新的活性位点,实现煤炭反应活性增强。CO2在800 ℃时与煤焦发生活化反应,水蒸气参与活化反应的起始温度更低。XPS检测发现,CO2气氛中,700 ℃碳氢化合物呈下降趋势,800 ℃碳氢化合物有所下降,推测水蒸气相较CO2参与活化反应起始温度更低。在拉曼光谱检测中,石墨化程度整体变化不大,并随温度升高有上升趋势,但水蒸气活化过程中石墨化程度在900 ℃有所下降,这可能是由于水蒸气中氢原子易与碳空位结合,在封闭活性位点的同时抑制了石墨化进程。13C-NMR结果中,水蒸气在高温下活化得到半焦的桥接碳含量明显减少,这也说明水蒸气对石墨化程度有一定抑制作用。

1)中温活化CO2和水蒸气活化后,样品活性位点数量均显著增多,其中800 ℃下CO2活化半焦的I(D3+D4)/IG由0.3增至0.8,但CO2主要通过将焦炭边缘的sp2结构转化为sp3-sp2混合形式结合的无定形碳或富含sp3杂化的碳结构起到活化效果,水蒸气可通过抑制层内石墨化进程达到活化效果。

2)中温活化后,煤中含氧官能团主要是羟基与醚,800 ℃下CO2和水蒸气活化后煤焦中羰(羧)基占比由最初的2%增至22%左右。CO2/水蒸气通过与煤焦分子结合形成羰基或羧基,在羰基或羧基分子影响下相连的碳键相应削弱断裂,从而破坏芳香环,增强煤炭反应活性。

3)CO2中温活化使接氧脂碳由0.02增至0.11,水蒸气活化后桥碳比为0.01,相比热解后桥碳比大幅降低,这是由于2个反应过程的决速步骤不同,CO2反应的决速步骤在于CO脱附,因此更易形成接氧脂碳;
水蒸气反应的决速步骤在于氢转移,更易形成碳氢化合物。

猜你喜欢煤焦中温半焦大同石炭系煤高灰半焦浮选脱灰研究选煤技术(2022年1期)2022-04-19勘 误燃料化学学报(2021年6期)2021-07-29煤焦库供焦皮带应急控制改造昆钢科技(2021年1期)2021-04-13沉降炉中半焦与煤燃烧特性对比研究能源工程(2021年1期)2021-04-13一种安全节能炉水调节剂在中温中压蒸汽锅炉上的应用实践中国特种设备安全(2021年8期)2021-02-10钆掺杂氧化铈纳米陶瓷的中温介电行为陶瓷学报(2020年2期)2020-10-27高速公路养护中温拌超薄磨耗层的施工技术分析江西建材(2018年2期)2018-04-14K-Fe复合催化剂对煤半焦气化速率与产物的影响浙江大学学报(工学版)(2016年9期)2016-06-05加氢热解煤焦的二氧化碳和水蒸气气化特性华东理工大学学报(自然科学版)(2015年1期)2015-11-07煤焦孔隙结构的表征及分析方法的构建华东理工大学学报(自然科学版)(2015年5期)2015-02-27

推荐访问:共价键 活化 机理