王敏生
(中石化石油工程技术研究院有限公司, 北京 102206)
气候变化是当前社会面临的最为严峻的挑战之一,给人类的生存与发展带来了严重的威胁。发展低碳经济是减少温室气体排放、应对气候变化的有效途径。为兑现巴黎协定的承诺,各国都在密集推进碳减排行动,截至2021年底,全球已有136个国家提出了“碳中和”承诺,这一范围覆盖了全球88%的二氧化碳排放、90%的GDP和85%的人口。油气作为传统化石能源,向低碳转型也成为必然趋势[1-4]。钻完井作为油气勘探开发中主要的碳排放阶段,是实现净零排放的重要环节。近年来,各油田技术服务公司不断加大钻完井作业过程低排放装备与技术的研发与应用,通过升级改造钻机与压裂泵车燃料系统、提升装备动力管理自动化水平、推广钻完井远程决策系统、加大储能技术的应用、探索与新能源耦合等一系列技术措施,显著降低了油气勘探开发过程中碳排放的强度。我国油气勘探开发正处在绿色转型与高质量发展的关键期,分析钻完井作业过程碳减排动向及进展,提出钻完井过程碳减排方向与建议,对我国油气公司探索钻完井碳减排路径具有重要意义。
据国际能源署(IEA)统计数据,2021年全球二氧化碳排放量为330×108t,主要来源于煤、石油和天然气等一次能源的使用。油气行业全价值链从开采、运输、储存到终端应用产生的碳排放量达到全球总碳排放量的42%,其中,油气勘探开发、储运、炼制等生产阶段的碳排放量占9%,油气使用阶段的碳排放量占33%。油气行业生产阶段的碳排放主要包括二氧化碳和甲烷,二氧化碳排放主要由供热与供能需求产生,如油气全产业链生产过程使用石油天然气作为燃料供能、供热和发电等带来的尾气排放。甲烷的排放主要来源于生产过程中天然气的不完全燃烧及逃逸等。图1所示为油气全产业链生产阶段碳排放来源[5]。从图1可以看出,在油气生产产业链排放的温室气体中,甲烷占57%,二氧化碳占43%,其中上游钻完井与生产过程中的二氧化碳排放约占10%,是实现净零排放的重要阶段。
图1 油气全产业链生产阶段碳排放来源Fig.1 Sources of carbon emissions in the whole oil & gas industry chain
作为全球向低碳经济转型的关键参与者,各油田技术服务公司制定了碳减排中长期发展战略,制定了减排目标,并加大了提高能源利用率、新能源领域、碳捕获与封存(CCS)等方面技术的研发力度,以减少温室气体排放,努力实现碳中和。表1为部分油田技术服务公司碳减排目标与技术布局[6-10]。油田技术服务公司碳减排措施取决于技术水平、资产组合和区域条件与政策等因素。其中,技术服务公司侧重电动装备、排放监测管理系统、自动化与远程决策等钻完井过程中的碳减排,以及CCS、地热、氢能、储能等新领域的减排。钻井承包商注重提高钻完井过程中的能源利用率,通过改造升级钻机动力系统,采用双燃料、天然气、网电、锂电池-柴油混合动力、燃料电池、储能等减少柴油的使用量,同时利用大数据动态监测分析软件和钻机动力系统管理软件实现碳排放监测和动力管理。
表1 部分油田技术服务公司碳减排目标与技术布局Table 1 Carbon emission reduction goals and technological layout of some oil service companies
2.1 升级改造钻机与压裂泵车动力系统,实现对柴油的替代
通过改变钻完井装备动力方式,采用双燃料发电机组、天然气发电机组和网电机组等替代柴油发电机组,降低柴油使用量,大幅减少井场二氧化碳和氮氧化合物的排放[11-15]。双燃料发电机组可以使柴油用量降低30%,天然气钻机的发电机组以天然气为燃料,不需要使用柴油,可以直接使用矿场天然气,减少了油罐车运送柴油产生的碳排放。美国的钻井承包商Patterson-UTI钻井公司有60台双燃料钻机和11台天然气钻机,占在用钻机总数的61%;
2013—2020年采用双燃料压裂泵车完成了17 000级压裂作业,柴油消耗量减少了4.37×104t[16]。随着美国政府环境监管力度持续加大,北美油田技术服务公司纷纷加快了“电代油”的步伐,加速电驱设备布局。哈里伯顿公司研发的全电动压裂系统输出功率高达3 677.49 kW,配套的天然气发电系统可以实时跟踪和分析压裂作业过程中的碳排放强度,从而能够最大限度地提高燃料利用率、减少碳排放量,如马塞勒斯区块使用了25 MW的电能,污染物排放量减少了32%。
2.2 提升装备动力管理自动化水平,优化发电机组运行效率
直流电驱钻完井装备发电机组的启动和关闭通常由现场人员手动操作,在钻机低负载条件下,发电机组使用数量与实际需求不一致,导致发电机组利用率低,增加了燃油的消耗量和温室气体的排放量。美国H & P公司开发的钻机动力自动化管理系统可以自动计算不同钻机负载下所需最优柴油发电机组数量,当钻机长时间在低载荷运行时,系统自动关闭多余的发电机组;
当钻机在高负载运行时,系统自动开启备用发电机组,以满足不同工况对动力的需求,提升了发电机组在任何燃料下的运行效率,减少了二氧化碳和氮氧化物的排放量。钻机动力自动化管理系统使燃料消耗量减少了5%,二氧化碳和氮氧化合物排放量大幅降低。2018—2021年,通过优化钻井作业工序,强化节油和减排目标,单位钻井进尺的二氧化碳平均排放量从66 t/km降至59 t/km,降幅达11%[17]。美国Cactus钻井公司与斯伦贝谢公司合作,利用钻机动力自动管理系统使发电机使用时间缩短20%,燃料消耗量和碳排放量减少10%。
2.3 加大储能技术在钻完井中的应用力度,实现机组调峰补偿
钻井作业不同阶段对动力的需求波动较大,造成柴油发电机组能量转换率较低。利用锂电池、飞轮、氢气储能技术和混合动力管理系统,可以优化钻机柴油发电机组配置数量,缩短柴油发电机组运行时间,减少燃料消耗量和碳排放量[18-20]。Patterson-UTI钻井公司利用锂电池存储和分配钻井作业所需能量,当钻井作业所需能量低于发动机组能量时,将多余的能量存储于锂电池;
反之,锂电池为钻机提供部分动力,实现发电机组调峰补偿,减少柴油发电机组使用数量。该系统可以存储500 kW·h的电能,提供相当于1.5台柴油发电机满负荷运转0.5 h的电力。双柴油发电机组+锂电池混合动力钻机通过锂电池储能技术提供动力,并在作业过程中为锂电池充电(见图2),比传统钻机减少1台柴油机的使用[21]。锂电池储能系统除了节省燃料外,还可避免因发电机故障导致的停机。西门子能源公司在海洋钻机上应用锂电池储能技术,使1个柴油发电机组的运行时间缩短了42%,二氧化碳和氮氧化合物的排放量分别减少了15%和12%。钻机绞车和平台吊车悬挂重物下降过程中的重力势能一般通过刹车片产生的热能耗散,美国国民油井公司开发了钻机动能回收系统,将该部分重力势能转换为飞轮高速旋转的动能,飞轮质量达15 t,最高可吸收功率高达1.75 MW的能量,由于飞轮储能时间只有6~10 s,将其旋转动能给容量450 kW·h的锂离子电池系统充电,锂电池组通过钻机微电网为钻机提供一部分动力,从而减少运行柴油发电机组的数量和缩短运行时间[22]。斯伦贝谢公司与氢燃料电池制造商Hyzon Motors 合作开发氢燃料电池系统,计划2023年在美国陆地钻机上进行测试。1台完全由氢燃料电池系统提供动力的钻机,预计每年二氧化碳排放量可以减少10 000 t。
图2 双柴油发电机组+锂电池混合动力钻机Fig.2 Hybrid drilling rig with dual-diesel generating set and lithium battery
2.4 大力推广钻完井自动化与远程决策系统,缩短建井周期、减少现场人员
利用先进的自动化与远程决策系统,提高井场作业的自动化和远程操作能力,可缩短建井周期、减少前往井场的人员和车辆,从而减少碳排放量。新冠肺炎疫情爆发期间,远程作业因其在减少员工接触和出差、减少碳足迹方面的优势,成为了油田技术服务领域工作的新常态。随着远程决策系统的不断迭代升级,远程作业范围已由随钻测量(MWD)和随钻测井(LWD)服务推广到远程控制高效定向钻井,以旋转导向钻井工具和螺杆钻具为基础,通过随钻测井工具实时采集井下数据,传输至地面和后方远程控制中心,经过地质导向综合团队分析决策后,再将指令传送至井场和井下工具,实现闭环双向控制和井场与远程控制中心的协同作业[23-25]。Noble Energy公司在北美页岩区块采用远程定向钻井技术,创造了日进尺3 133.00 m的纪录。2020年,贝克休斯公司在30多个国家提供了远程服务,有72%的钻井作业、100%的MWD/LWD和定向钻井由远程作业中心完成,还完成了历史上最大的一次远程操作部署,为沙特阿美石油公司建立了满足2 000多个最终用户和全天候钻井作业需要的远程决策系统。Patterson-UTI钻井公司在69个井场提供了远程随钻测量服务(MWD),井场MWD人员减少了50%,在某些情况下,甚至可以在没有任何MWD人员的情况下进行MWD服务。
2.5 积极探索钻完井作业与海洋新能源耦合,提升能源利用率
作为全球向净零排放经济转型的关键参与者,海洋油气技术服务公司不断加大低碳技术装备研制力度,以减少钻完井作业中温室气体的排放量。在围绕自身油气业务减碳的同时,海洋油气与新能源技术进行耦合成为未来低碳转型的主要趋势,图3为海洋钻完井与新能源耦合场景[19,26]。挪威Odfjell Drilling海洋钻井公司正与西门子能源有限公司合作,利用海上浮式风电系统为钻井平台提供动力,其核心由风力涡轮发电机组和海上浮式电网系统组成。每台风力发电机最大可提供14 MW的电力,但是由于风电具有间歇性的缺点,需要在浮式风电单元安装电池储能系统,以确保在风电不足的天气下保障钻机的电力供应。英国Cerulean Winds公司提出利用浮式风能、氢气储能方案,加速英国大陆架海上石油和天然气资产的脱碳。项目计划耗资100亿英镑在谢德兰以西和北海中部安装200台风力发电机,总容量为3 GW/h,在为海上油气生产设施提供绿电的同时,还可为陆上绿色氢电厂提供超过1.5 GW/h的电力,可以减少2 000×104t二氧化碳排放,计划于2024年实现商业化[27]。海洋工程服务公司Technip FMC正在挪威建设和测试新一代离岸风电系统,当风电过剩时,在浮式平台上利用多余电力对过滤后的海水进行电解制氢,将绿氢输送并储存于位于海床的高压储能容器内;
当风电不足时,利用燃料电池将氢气转化为电力,用于海上风电的调峰填谷。
图3 海洋钻完井与新能源耦合Fig.3 Coupling scenario of offshore drilling and completion with new energy
3.1 启 示
1)钻完井作业过程碳减排已成为油田技术服务行业发展的新竞技场。在能源转型和低碳目标背景下,油田技术服务公司都制定了减排目标,加大了钻完井作业过程低碳技术的投入并进行布局,通过升级改造作业装备动力系统、推广数字化技术和与新能源公司合作提升电气化水平等途径,快速提升绿色低碳业务水平,以践行低碳转型的承诺。
2)技术水平和政策决定了油田技术服务公司的碳减排布局与策略。钻完井过程碳减排还处于前期探索阶段,还没有统一的解决方案,油田技术服务公司根据自身技术水平、经济性和区域政策,多措并举,推动碳减排。技术服务公司侧重通过电动装备、储能技术研发和数字化技术提升作业效率,钻井承包商侧重通过钻完井装备动力系统的改造升级、钻机动力系统管理软件研发等提升能源利用率。
3)自动化智能化技术是实现净零排放的重要手段。自动化智能化技术可以提高作业效率,缩短建井周期,借助远程决策系统还可以减少现场作业人员和后勤保障,是减少碳排放、实现净零排放的重要措施。国外油田技术服务公司不断加大自动化智能化钻完井技术迭代升级与推广力度,通过远程决策系统实现了随钻测量、随钻测井、定向钻井等钻井远程决策与操控,并形成了独有的技术和商业服务模式。
4)海洋油气与新能源技术进行耦合成为未来低碳转型的主要趋势。在能源转型和碳减排的推动下,越来越多的传统海上油气开采企业围绕自身油气业务减碳的同时,通过合资合作将海洋油气与新能源技术进行耦合。协同发展海洋油气与海上风电,不仅可以降低海上电力输送成本,还能减少油气勘探开发二氧化碳的排放。此外,未来海洋油气与海上风电还可以在天然气发电、二氧化碳存储和氢气生产等领域发挥协同互补作用。
3.2 建 议
我国提出力争在2030年前实现碳达峰,2060年前实现碳中和。油气勘探开发作为重要的碳排放源,直接影响到整体碳达峰和碳中和目标的实现。钻完井作业过程碳减排是油气上游实现碳减排的重要方向,建议我国石油公司加强钻完井作业过程中碳排放的管理和节能减排技术的研发与应用,以实现对低碳转型的承诺。
1)强化钻完井全过程中碳排放的管理。为确保碳减排措施的有效性,要明确碳排放核算及分析方法,形成碳核算和报告的机制。以碳核算为基础,实行钻完井全过程碳排放管理,建立并实施科学统一的碳减排统计指标体系和监测体系,强化对碳排放重点环节的指导和监管,确定碳减排目标,并建立评价考核制度,以确保责任清晰、措施到位。
2)推进钻完井全过程低碳化转型。要根据自身技术水平和井场工业设施条件,多管齐下,减少碳排放。一方面注重作业装备动力系统改造升级,采用双燃料、天然气、网电、锂电池+柴油混合动力机组,减少柴油的消耗量;
另一方面利用作业装备大数据动态监测分析软件、自动化动力系统管理软件和储能技术提高能源利用率。
3)提升钻完井作业效率。作为油气勘探开发的重要环节,钻完井的碳减排需要与施工效率的提升相结合,强化优快钻完井技术的研究与应用,不断提升钻完井智能化、自动化水平,推广远程决策系统,不断提高作业效率,缩短钻井周期,以低碳方式实现快速钻完井,降低油气生产中的碳排放强度。
4)探索钻完井作业与海洋新能源技术耦合。全球海上风电资源丰富,海上风电开发和海上油气开采又有着相似的供应链和技术要求,油气行业的技术和安全标准可高度移植。充分利用海洋油气作业技术,开展海洋风电开发关键技术攻关,快速进入海上风电领域。同时,将海洋油气开发与海上风电、天然气发电、电解水制氢等进行一体化协同。
全球应对气候变化行动正在对油气行业产生广泛而深刻的影响,油气井钻完井低碳转型与加大碳减排力度也成为必然趋势。钻完井作业过程碳减排总体还处于初期阶段,尚无统一的解决方案,升级改造钻机与压裂泵车动力系统、提升装备动力管理自动化水平、加大储能技术在钻完井中的应用、推广钻完井自动化与远程决策系统、探索钻完井作业与海洋新能源技术耦合是碳减排的重要方向。我国油气公司要根据区域政策、自身技术水平、经济性,多措并举,强化钻完井全过程碳排放监测与管理,推动低碳高效工程技术的研发与应用,加快钻完井作业数字化转型,加强与新能源企业的合作,不断提升低碳运营能力,以经济高效的方式实现低碳发展,支撑油气绿色低成本开发利用。
致谢:论文撰写过程中,中石化石油工程技术研究院有限公司光新军博士、闫娜博士帮助完成了资料收集工作,在此表示感谢!
猜你喜欢发电机组钻机柴油煤气发电机组DEH控制系统的优化山东冶金(2022年4期)2022-09-14邻近既有建筑物全套管回转钻机拔桩技术铁道建筑技术(2021年4期)2021-07-21传统钻机的升级改造设备管理与维修(2019年16期)2019-12-23为什么冬天柴油会“结冰”?石油知识(2019年1期)2019-02-26大直径潜孔锤钻机凿岩机械气动工具(2016年1期)2016-11-11基于PLC控制柴油发电机组3D 模型通信电源技术(2016年4期)2016-04-04柴油发电机负荷计算智能建筑电气技术(2015年5期)2015-12-10旋挖钻机钻具产品类型凿岩机械气动工具(2015年3期)2015-11-11八钢欧冶炉TRT发电机组成功并网发电新疆钢铁(2015年3期)2015-02-20国内首台65MW超高压中间再热发电机组并网发电中国设备工程(2014年1期)2014-02-28