五年级数学知识点总结汇编8篇【精选推荐】

时间:2023-08-22 18:05:02 来源:网友投稿

五年级数学知识点总结第1篇一、意义1、小数乘整数:求几个相同加数的和的简便运算。如:++++改用乘法算式表示为(×5),这个乘法算式表示的意义是(5个是多少)2、小数乘小数:就是求这个数的几分之几是多下面是小编为大家整理的五年级数学知识点总结汇编8篇,供大家参考。

五年级数学知识点总结汇编8篇

五年级数学知识点总结 第1篇

一、意义

1、小数乘整数:求几个相同加数的和的简便运算。

如:++++改用乘法算式表示为(×5),这个乘法算式表示的意义是(5个是多少)

2、小数乘小数:就是求这个数的几分之几是多少。

如:×就是求的十分之八是多少。

二、算理

1、计算方法:按整数乘法的法则算出积,再点小数点;点小数点时,要看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

小数乘法计算法则简记为:一算,二看,三数,四点,五去;

2、注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、乘法的验算有很多种方法:可以交换两个因数的位置再算一遍;可以用估算的方法;还可以用计算器验算。

4、积与因数的关系:

一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

用字母表示:a×b=c(a不等于0)

b>1,a>c

b=1,a=c

b<1,a

三、积的近似数

1、求近似数的方法有三种:四舍五入法、进一法、去尾法,在这一单元主要用四舍五入法。

步骤如下:先按照小数乘小数的方法算出积,再按题目的要求和“四舍五入”法取近似值。

注意:表示近似数时小数末尾的0不能随便去掉。

如:保留两位小数是()

2、通常情况下,人民币的最小单位是分,以元为单位的小数表示“分”的是百分位。

四、混合运算

小数四则运算顺序跟整数是一样的。

整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

关于乘法分配律的简算是这一部分的重点和难点。

案例:××4

×202

×

×+×

×32×

五、解决问题

1、实际生活中的估算应用,可以估大或者估小,要根据实际情况选择适当的估算策略。

2、分段计费的问题,比如乘坐出租车的问题、电费水费的问题都属于分段计费。解决方案有两种:第一种分段计费后在合并;第二种全程单价计算然后再加上少算的金额。

五年级数学知识点总结 第2篇

一、填空。

1、某厂计划每月用煤a吨,实际用煤b吨,每月节约用煤()吨。

2、一本书100页,平均每页有a行,每行有b个字,那么,这本书一共有()个字。

3、用字母表示长方形的周长公式()

4、根据运算定律写出:

9n+5n=(+)n=a××(×)

ab=ba运用()定律。

5、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。186+a表示()

6、一块长方形试验田有公顷,它的长是420米,它的宽是()米。

7、一个等腰三角形的周长是43厘米,底是19厘米,它的腰是()。

8、甲乙两数的和是,乙数的小数点向右移动一位,就等于甲数。甲数是();乙数是()。

二、判断题。(对的打√,错的打×)

1、含有未知数的算式叫做方程。()

2、5x表示5个x相乘。()

3、有三个连续自然数,如果中间一个是a,那么另外两个分别是a+1和a-1。()

4、一个三角形,底a缩小5倍,高h扩大5倍,面积就缩小10倍。()

三、解下列方程。

+5=4015x+6x=168

5x+—×3—(写出检验过程)

五年级数学知识点总结 第3篇

可能性

事件的发生有确定性和不确定性,确定的事件用“一定”或“不可能”来描述,不确定的事件用“可能”来描述。

事件发生可能性的大小

可能性的大小与数量的多少有关,相同条件下,在总数中所占数量越多,可能性越大;所占数量越少,可能性越小。

《可能性》练习题

一、填空题。

1、掷一枚骰子(骰子的数字分别是1、2、3、4、5、6),单数朝上的可能性是()。

2、某商家开展抽奖活动,10张奖卷有一个一等奖,两个二等奖,小明第一个去抽,他得到一等奖的可能性是(),如果第一次他抽中二等奖,那他再次抽中二等奖的可能性是()。

3、在一个正方体的六个面分别写上数字,使得正方体掷出后,“5”朝上的可能性为1/2。正方体有()面要写上“5”。

4、从一副扑克牌(四种花色、去掉大小王)中,抽到5的可能性是(),抽到红心5的可能性是(),抽到黑桃的可能性是()。

5、从1-9共9个数字中任取一个数字,则取出的数字为偶数的可能性为( )。

1

6、某人射击一次,击中0-10环的结果的可能性都相等,那么击中8环的可能性是( )。

7、从写有1-6的6张卡片中任抽一张,抽到是2的可能性是( )。

8、有10张卡片,分别写有1-10,从中随机抽出一张,则抽到5的可能性有多大?抽到偶数的`可能性有多大?

9、时扔两枚硬币,如果一个是反面则李丽胜,两个同时为正面或同时为反面则王军胜,这个游戏公平吗?说明理由。如果扔100次,两个都是正面大约会出现多少次?

10、设一盒中有10个白球,6个红球,2个黄球,从盒中任取一球,哪种颜色的球被取到的可能性?哪种最小,分别为什么?

11、刘佳国庆节到北京旅游,她带了白色和黄色两件上衣,蓝色、黑色和红色3条裤子,她任意拿一件上衣和一条裤子穿上,共有多少种可能?

二、下面哪些事情发生的可能性为1,哪些发生的可能性为0。

(1)地球每天都在转动。()

(2)我从出生到现在没吃过一点儿东西。()

(3)太阳从西边升起。()

(4)世界上每天都有人出生。()

五年级数学知识点总结 第4篇

分数加减法

1, 异分母分数加减法:先通分,化成同分母分数,然后按照同分母分数加减法法则进行计算。

2, 对计算结果的要求:能约分的要约成最简分数,是假分数要化成带分数。

3, 分数化成小数的方法:用分子除以分母,除不尽的保留两位小数。

4, 小数化成分数的方法:看小数部分有几位,就在1的后面加几个0做分母,去掉小数点做分子,能约分的要约分。

分数

1、 分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、 分母:表示平均分的份数。分子:表示取出的份数。

3、 分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做 分数。表示其中的一份的数,叫做这个分数的分数单位。

4、 真分数:分子小于分母的分数叫做真分数。真分数小于1。

5、 假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。

6、 带分数:由整数和真分数组成的分数叫做带分数。

7、 假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。

8、 整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。

9、 带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。

10、 质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

11 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

如12=2×2×3

12、几个数公有的因数叫做这几个数的公因数。其中的一个,叫做它们的公因数。

13 互质:两个数的公因数只有1,这两个数叫做互质。

互质的规律:
(1) 相邻的自然数互质; (2) 相邻的奇数都是互质数; (3) 1和任何数互质; (4) 两个不同的质数互质 (5) 2和任何奇数互质。

质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间的公因数是1,如8和

14、 几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

15、 求公因数,最小公倍数的方法 关系 公因数 最小公倍数 倍数关系

16、 分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的 分数是最简分数。

17、 约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过 程叫做约分。计算结果通常用最简分数表示。

18、 通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数 做分数的分母较简便。

19、 如何比较分数的大小:
分母相同时,分子大的分数大; 分子相同时,分母小的分数大; 分子分母都不同时,通分再比。

20、 分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分 数大小不变。

21、分数的意义两种解释:①把单位“1”平均分成4份,表示这样的3份。

②把3平均分成4份,表示这样的1份。

五年级数学知识点总结 第5篇

一、指导思想:

根据本学期工作计划的安排,结合班级学生及数学学习的具体情况,本着以素质教育为核心,以提高学生实际数学能力为重点,力求挖掘学生的积极性和学习潜在能力,在不增加学习负担的前提下,进一步争取数学整体教学质量的提高。

二、复习目标:

1、使学生比较系统地、牢固地复习有关图形的变换,分数的意义和性质,复习分数加、减法计算,长方体和正方体,简单的统计,学会使用简便算法,合理、灵活地进行计算,会解简易方程,养成检查和验算的习惯。

2、使学生巩固已获得的一些计量单位的大小的表象,牢固地掌握所学的单位间的进率,能够比较熟练地进行名数的简单改写。

3、使学生牢固地掌握所学的几何形体的特征,能够比较熟练地计算一些几何形体的周长、面积和体积,巩固所学的简单的画图、测量等技能。

4、使学生掌握所学的统计初步知识,能够看和绘制简单的统计图表,并且能够计算求平均数问题。

5、使学生牢固地掌握所学的一些常见的数量关系和应用题的解答方法,能够比较灵活地运用所学知识独立地解答不复杂的应用题和生活中一些简单的实际问题。

三、总复习中应注意的几个问题:

1、重视基础知识的复习和知识之间的联系。

2、注意启发、引导学生进行合理的整理和复习。

3、加强反馈,注意因材施教。

4、以“课标”为本,扣紧“三维”目标。

5、力求做到上不封顶,下要保底。

四、复习措施:

1、在复习分块章节中,重视基础知识的复习,加强知识之间的联系。使学生在理解上进行记忆。比如:基础概念、法则、性质、公式……在课堂上、在系统复习中纠正学生的错误,同时防止学生机械地背诵;但是对于计量单位要求学生在记忆时,比较相对的单位,理顺关系。

2、在复习基础知识的同时,紧抓学生的能力的培养。

(1)四则混合运算方面,重视整数、小数、分数的四则混合运算,既要提高学生计算的正确率,又要培养学生善于利用简便方法计算。利用晚自习与课后辅导时间对学生进行多次的过关练习。

(2)在量的计量和几何初步知识上,多利用实物的直观性培养学生的空间想象能力,利用习题类型的全面性,指导学生学习。

(3)应用题中着重训练学生的审题,分析数量关系,寻求合理的简便解题方法,练讲结合,归纳总结,抓订正、抓落实。

(4)其它的知识将在复习过程中穿插的进行,以学生的不同情况做出具体要求。

3、在复习过程中注意启发,加强“培优补差”工作。对学习能力较差,基础薄弱的学生,要求尽量跟上复习进度,同时开“小灶”,利用课间与课后时间,按最低的要求进行辅导。而对于能力较强,程度较好的学生,鼓励他们多看多想多做,老师随时给他们提供指导和帮助。

4、在复习期间,引导学生主动、自觉的复习,进行系统化的归纳和整理,对学生多采用鼓励、表扬的方法,调动学习的积极性。

5、在复习过程中,对学生的掌握情况要做到心中有数,认真地与学生进行反馈交流,达到预期的复习目标。

五、复习时间安排:

1、6月16、17日复习图形的变换、因数和倍数;

2、6月18日复习分数的意义和性质和分数加、减法计算;

3、6月19日复习长方体和正方体;

4、6月20日复习简单统计、数学广角;

5、6月23日第五次检测;

5、6月24、25日准备期末测试。

五年级数学知识点总结 第6篇

第三单元

观察物体

能够辨认从正面、左面和上面观察到的简单物体的形状。同时能画出该物体的正视图,正视图就是从正面看到的图形。

能够正确画出从正面、左面和上面观察到的简单物体的形状,画图时一定要用直尺或三角板、圆规等工具,千万不能用手工直接画,这样画出的图形不标准。

能够正确想象出从正面、左面或上面观察到的简单物体的最多或最小个数。

从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面,最少能看到一个面。

平行四边形的面积

平行四边形的面积等于两组邻边的积乘以夹角的正弦值;

三角形的面积

(1)S△(a是三角形的底,h是底所对应的高)

(2)S△=1/2acsinB=1/2bcsinA=1/2absinC(三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数)

(3)S△=abc/(4R) (R是外接圆半径)

(4)S△=[(a+b+c)r]/2 (r是内切圆半径)

(5)S△=c2sinAsinB/2sin(A+B)

五年级数学知识点总结 第7篇

第一单元 小数乘法

1.小数乘整数:意义——求几个相同加数的和的简便运算。

计算方法:先把小数扩大成整数;
按整数乘法的法则算出积;
再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2.小数乘小数:意义——就是求这个数的几分之几是多少。

计算方法:先把小数扩大成整数;
按整数乘法的法则算出积;
再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

规律:
一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

3.求近似数的方法一般有三种:

⑴四舍五入法;

⑵进一法;

⑶去尾法

4.计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

5.小数四则运算顺序跟整数是一样的。

6.运算定律和性质:
加法:

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

减法:
减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c

乘法:
乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c

除法:
除法性质:a÷b÷c=a÷(b×c)

7.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

8.小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

9.除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

10.在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。五年级数学重要知识点

11.除法中的变化规律:

①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大,商随着扩大。

③被除数不变,除数缩小,商扩大。

12.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32。

13.小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

14.从不同的角度观察物体,看到的形状可能是不同的;
观察长方体或正方体时,从固定位置最多能看到三个面。

15.在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

16.a×a可以写作a?a或a2,读作a的平方。

2a表示a+a。

17.方程:含有未知数的等式称为方程。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

18.解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

19.10个数量关系式:
加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商。

20.所有的方程都是等式,但等式不一定都是等式。

21.公式:长方形:周长=(长+宽)×2 【长=周长÷2-宽;

宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a 平行四边形:面积=底×高 字母公式:
S=ah 三角形:面积=底×高÷2【底=面积×2÷高;

高=面积×2÷底】 字母公式:
S=ah÷2 梯形:
面积=(上底+下底)×高÷2 字母公式:
S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底;

高=面积×2÷(上底+下底)】

22.平行四边形面积公式推导:剪拼、平移 平行四边形可以转化成一个长方形;

长方形的长相当于平行四边形的底;

长方形的宽相当于平行四边形的高;
长方形的面积等于平行四边形的面积;

因为长方形面积=长×宽,所以平行四边形面积=底×高。

23.三角形面积公式推导:旋转 两个完全一样的三角形可以拼成一个平行四边形;

平行四边形的底相当于三角形的底;

平行四边形的高相当于三角形的高;
平行四边形的面积等于三角形面积的2倍;

因为平行四边形面积=底×高,所以三角形面积=底×高÷2

24.梯形面积公式推导:旋转 两个完全一样的梯形可以拼成一个平行四边形;

平行四边形的底相当于梯形的上下底之和;

平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍;

因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

25.等底等高的平行四边形面积相等;
等底等高的三角形面积相等;

等底等高的平行四边形面积是三角形面积的2倍。

26.长方形框架拉成平行四边形,周长不变,面积变小。

27.组合图形:转化成已学的简单图形,通过加、减进行计算。

28.平均数=总数量÷总份数

29.中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。

30.数不仅可以用来表示数量和顺序,还可以用来编码。

31.由6位组成:
前2位表示省(直辖市、自治区) 前3位表示邮区 前4位表示县(市) 最后2位表示投递局

32.身份证号码:18位 倒数第二位的数字用来表示性别,单数表示男,双数表示女。

五年级数学知识点总结 第8篇

一、学习目标:

1.探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释;

2.会用“四舍五入”法截取积是小数的近似值;
培养从不同角度观察,分析事物的能力;

3.理解用字母表示数的意义和作用;

4.理解简易方程的意思及其解法;

5.在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。

二、学习难点:

1.能正确进行乘号的简写,略写;
小数乘法的计算法则;

2.小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足;

3.除数是整数的小数除法的计算方法;
理解商的小数点要与被除数的小数点对齐的道理;

4.构建初步的空间想象力;

5.用字母表示数的意义和作用;

6.多边形面积的计算。

三、知识点概念总结:

1.小数乘整数的意义:求几个相同加数和的简便运算;
一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

2.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;
如果位数不够,就用“0”补足。

3.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

4.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;
如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

5.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

6.积的近似数:四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。

7.数的互化:

(1)小数化成分数

原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

(2)分数化成小数

用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

(3)化有限小数

一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;
如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。

(4)小数化成百分数

只要把小数点向右移动两位,同时在后面添上百分号。

(5)百分数化成小数

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

(6)分数化成百分数

通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(7)百分数化成小数

先把百分数改写成分数,能约分的要约成最简分数。

8.小数的分类:

(1)有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。

(2)无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……

(3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

(4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555……0.0333……12.109109……;
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。

9.循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。

10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。

11.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)

方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

12.方程的解:使方程左右两边相等的未知数的值,叫做方程的解。如果两个方程的解相同,那么这两个方程叫做同解方程。

13.方程的同解原理:

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

14.解方程:解方程,求方程的解的过程叫做解方程。

15.列方程解应用题的意义:用方程式去解答应用题求得应用题的未知量的方法。

16.列方程解答应用题的步骤:

(1)弄清题意,确定未知数并用x表示;

(2)找出题中的数量之间的相等关系;

(3)列方程,解方程;

(4)检查或验算,写出答案。

17.列方程解应用题的方法:

(1)综合法

先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

(2)分析法

先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

18.列方程解应用题的范围:

小学范围内常用方程解的应用题:

(1)一般应用题;

(2)和倍、差倍问题;

(3)几何形体的周长、面积、体积计算;

(4)分数、百分数应用题;

(5)比和比例应用题。

19.平行四边形的面积公式:

底×高(推导方法如图);
如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=ah

20.三角形面积公式:

S△=1/2_ah(a是三角形的底,h是底所对应的高)

21.梯形面积公式:

(1)梯形的面积公式:(上底+下底)×高÷2.

用字母表示:(a+b)×h÷2

(2)另一计算公式:中位线×高

用字母表示:l·h

(3)对角线互相垂直的梯形:对角线×对角线÷2.

推荐访问: