数学六年级上册复习第1篇一、指导思想:学期即将结束,按教学计划开展教学活动已进入复习阶段,期末复习,如果不讲究科学的态度和方法,那么对学生来说,就一定感到很乏味。所以调动学生的复习积极性很重要。为了更下面是小编为大家整理的数学六年级上册复习9篇,供大家参考。
数学六年级上册复习 第1篇
一、指导思想:
学期即将结束,按教学计划开展教学活动已进入复习阶段,期末复习,如果不讲究科学的态度和方法,那么对学生来说,就一定感到很乏味。所以调动学生的复习积极性很重要。为了更好的提高复习效率,,突出尖子生,重视学困生,提高中等生,有的放矢的做好复习,特制定本复习计划。
二、复习内容:人教版小学数学第十一册。
二、复习目标:
1、使学生进一步理解分数乘、除法的意义,掌握分数乘、除法的计算法则。比较熟练地计算分数乘、除法,会口算简单的分数乘、除法。进一步理解认识倒数,理解比的意义和性质,比较熟练地求比值和化简比。
2、使学生比较熟练地进行分数四则混合运算,提高计算速度。会应用学过的运算定律进行简便运算。
3、使学生能够解答比较容易的分数、百分数应用题,提高综合运用所学知识解决比较简单的实际问题能力,能够根据应用题的具体情况,灵活地选用算术解法和方程解法,提高解题能力。
4、使学生进一步牢固理解并掌握圆周长和圆面积的计算公式,能够正确计算圆的周长和面积,能应用圆的周长和面积公式解决常见的实际问题;进一步理解轴对称的意义,会画对称轴。
三、复习措施:
1、全面系统地对整册教材的知识体系进行梳理,查漏补缺。
2、坚持以人为本的教学理念,确保学生的主体地位,通过组织讨论、合作学习等多形式的组织复习活动,让学生参与复习的全过程,巩固已学过的学习方法,不断提高自学能力,培养探索精神。
3、加强知识的纵横联系,以学生为主体,引导学生主动地进行复习和整理,重视在学生理解基本概念、法则、性质的基础上注意加强知识间的联系,使学生获得的概念、法则、性质系统化。对于易混淆的内容要加强比较,(如求比值与化简比)使学生明确它们之间的联系和区别。
4、强化应用题的基本训练,常见数量关系的积累和运用,使学生牢固掌握应用题的解题步骤和基本方法,不断提高学生的分析能力与解题能力。
5、强化能力培养。在复习数学基础知识的同时,注意学生各种能力的培养。如,复习四则运算,在学生理解运算法则的基础上,经常性地进行训练,不断提高计算的正确率,培养学生合理、灵活运用计算方法的能力。又如,复习圆的周长和面积时,通过各种直观手段发展学生的空间观念,培养测量和画图的技能。
6、加强反馈,注意因村施教。复习时要注意抓重点,有针对性,加强反馈,及时根据学生的学习情况调节教学过程,使各种程度的学生得到有效发展。
7、适当补充设计练习题,强化训练,进一步发展他们思维的灵活性,提高综合应用知识解决实际问题的能力。
8、做好复习转差工作,尤其要对学习困难的学生进行重点辅导。并成立互帮小组。结对子,一帮一。在教师和学生的共同帮助下,使后进学生争取在期末达到合格。
9、以说代做,以听代练,以练代讲,有重点、有系统的进行有效复习检查。
10、重视测试。通过单元测试和综合测试卷,让学生对本册教材的学习内容达到融会贯通。测试评卷时,注重激发学生竞争意识,调动学生的学习积极性。
四、复习进度安排:
1、第15-16周:将知识点理顺,学生重温整册内容,并同步进行单元测试,了解平时错误或遗忘的内容。
2、第17周:
(1)计算的专项复习,尤其是简便计算和解方程。
(2)分数(百分数)应用题的专项复习,将平时的错题展示,让学生在课堂上自己分析错误点,促使学生掌握正确的解题思路。计算的专项复习,尤其是简便计算和解方程。
(3)圆的专项复习,由于圆——这一知识掌握得比较好,所以主要是让学生注意在运用公式计算时的一些特殊性。
(4)统计、数学广角复习。
3、第18周:整册教材的模拟测试。
4、第19周:针对复习中出现的问题进行查缺补漏。
数学六年级上册复习 第2篇
一、指导思想:
根据本学期工作计划结合班级学生及数学学习的具体情况,以素质教育为核心,以提高迅速实际数学能力为重点,力求挖掘学生的积极性和学习潜在能力,提高学生的数学成绩。
二、复习形式:
分类复习、综合复习
三、复习内容:
本册教材9个单元:
1、分数乘法2、位置与方向(二) 3、分数除法4、比5、圆 6、百分数(一)7、扇形统计图8、数学广角—数与形9、总复习
复习时按照整册教材的知识体系分——分数乘法和除法以及比和百分数(一)、圆和位置与方向(二)、扇形统计图和数学广角这三大块来进行知识的梳理。
四、复习目标:
1、通过整理和复习,使连贯分数乘法、除法的知识点,对分数计算有整体的认识,建立有关分数综合计算的认知结构。
2、通过整理和复习,使学生进一步巩固位置与方向可以利用方向和距离来确定物体具体位置,增强学生数学联系生活的理念。
3、通过整理和复习,使学生进一步圆特征,圆的周长和面积的相关知识和计算,在观察物体中加深对物体和相应视图的认识,进一步发展空间观念。
4、通过整理和复习,使学生进一步掌握统计的基本知识和方法,读懂扇形统计图,会根据需要选择不同的统计图。
5、通过整理和复习,使学生进一步提高综合运用所学知识解决实际问题的能力,在解决实际问题的过程中进一步体会数学的价值。
6、通过整理和复习,使学生经历回顾本学期的学习情况,以及整理知识和学习方法的过程,激发学生主动学习的愿望,进一步培养反思的意识和能力。
五、具体安排:
周 次
内 容
备 注
分单元复习基础知识
分版块复习,“穿针引线”连贯知识点
综合复习及检测
从大局入手,查缺补漏
六、复习措施:
1、教会学生复习方法,先全面复习每一单元,再由学生主动重点复习有关重点内容。
2、采用多种方法,比如学生出题,抢答,抽查,学生互批等方法,提高学习兴趣。
3、加强补差,让优等生帮助后进生。
4、课堂上教会学生抓住每单元的知识要点,重点突破,加强解决问题能力的培养,并相机进行口算能力的培养。
数学六年级上册复习 第3篇
一、复习内容
分数乘除法。
分数乘、除法属于分数的基本知识和技能,而且两者关系密切,教材将这两部分内容集中安排。教材首先通过一组题目,强调分数乘除法的关系,即分数除法是分数乘法的逆运算。同时对分数乘除法的计算方法进行了复习。比的相关概念、倒数的概念和计算、比的性质、比与分数及除法的关系等也是复习的重点,教材通过总复习的第2题和练习二十七的第3、4、5题进行了复习。
此外,用分数乘除法解决问题也是这部分的重点内容,主要包括求一个数的几分之几是多少的问题(含稍复杂的)、已知一个数的几分之几是多少求这个数的问题(含稍复杂的)等。教材把它们对照编排,便于学生弄清这几类问题的联系和区别,从而更好地掌握解决问题的思路,即先明确单位“1”,再看单位“1”是已知还是未知来确定解决问题的方法。为了让学生更好地掌握分析方法,总复习的第5题和练习二十七的第7题还安排了需要两次判断单位“1”的练习。
百分数。
百分数内容的复习重点放在百分数的应用,紧接在用分数乘除法解决问题后编排,这样可以使学生看到它们在结构、解题思路上的一致性,便于加强知识间的联系。百分数的概念没有单独复习,但它是百分数应用的基础,因此要注意进行复习。总复习的第6题是求常见的百分率的问题,通过给出计算公式,既复习百分数的意义、百分数与分数及小数的互化,又可复习求烘干率等类似问题。第7题为稍复杂的百分数的应用问题。练习二十七的第13、14、15题安排的是有关百分数的习题,其中第15题涉及国债、纳税、利率等内容的复习。
空间与图形。
这部分内容包括位置与圆的复习。
在第一学段中,学生已经会用第几组、第几个来表示物体的位置,本学期进一步学习用数对表示物体的位置。教材通过总复习的第8题复习用数对表示物体的位置,练习二十七的第1题安排了相应的练习。
本学期圆的认识包括直径、半径、π、轴对称图形等概念以及圆的周长和面积、圆的画法等内容,教材重点复习了圆的周长、面积计算公式和轴对称图形。总复习的第9题通过让学生复习计算公式的得出过程,加深学生对计算公式的理解和掌握,以使学生在解决具体问题时能根据不同条件和问题灵活地运用计算公式。第10题复习轴对称图形的概念,并运用概念判断两个图形是否是轴对称图形,加深学生对概念的理解和整理。直径、半径及其它们之间的关系等知识在练习二十七的第11题进行复习。
统计。
本学期统计的内容主要是认识扇形统计图。教材通过总复习第11题使学生进一步体会扇形统计图的特点,即能清楚地表明各部分数量同总数之间的关系,并根据给出的信息解决一些问题,以促使学生分析信息、解决问题能力的提高。
二、复习目标
通过总复习,系统、全面地复习和整理本学期所学知识,帮助学生构建合理的知识体系,以便学生更好地理解和掌握所学的概念、计算方法以及有关的规律性的知识,进一步发展学生的数概念、空间概念、统计概念,增强学生综合运用知识的能力,全面达到本学期的教学目标。
1、理解分数乘、除法的运算意义,掌握分数乘、除法的计算方法和分数四则混合运算的运算顺序;能正确计算分数乘、除法和分数四则混合运算(不超过三步)式题,能应用运算律和运算性质进行有关分数的简便计算;能应用分数乘法解决“求一个数的几分之几是多少”的简单实际问题,能列方程解决“已知一个数的几分之几是多少,求这个数”的简单实际问题,能用分数乘法和加、减法解决稍复杂的实际问题(不超过两步)。
2、理解比的意义和基本性质,能应用比的意义和基本性质求比值、化简比,能正确解决按比例分配的实际问题。
3、理解百分数的意义,能正确进行百分数与分数、小数的互化,会解决“求一个数是另一个数的百分之几”的简单实际问题。
4、认识圆,掌握圆的基本特征,理解直径与半径的相互关系;会用圆规画圆。
理解圆周率的意义,掌握圆周率的近似值,理解和掌握圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。
5、学生在整理与复习的过程中,进一步体会数学知识和方法的内在联系,能综合应用学过的数学知识和方法解释日常生活现象、解决简单实际问题,进一步发展数感、空间观念和统计观念,增强解决问题的策略意识和反思意识,提高解决问题的能力。
6、学生在整理与复习的过程中,进一步评价和反思自己在本学期的整体学习情况,体验与同学交流和获取知识的乐趣,感受数学的意义和价值,发展对数学的积极情感,增强学好数学的自信心。
<
三、复习重点
分数、百分数的计算(包括分数乘法、分数除法、分数四则混合运算)及应用题。圆的概念和周长、面积的计算。
四、复习难点
从学生平时的作业和单元检测情况来看的问题是分数、百分数稍复杂的除法应用题,其次是分数和百分数、圆的概念。
五、复习原则
1、充分调动学生自主学习的积极性,鼓励学生自觉地进行整理和复习,提高复习能力。
2、充分体现教师的指导作用,知识的重点和难点要适时讲解点拨,保证复习效果。
3、充分体现因材施教分类推进的教育原则,针对不同层次的学生设计不同的教学内容和教学方法,查漏补缺,集中答疑,提高复习效果。
六、复习方法
1、带领学生按单元整理复习,巩固基础知识。
教师要按单元抓准知识的重难点,进行相关知识的整合与链接,使之形成完整的知识网络。例如应用题的复习,可由简单的分数应用题链接到稍复杂的复合应用题,将知识整合链接起来,进一步理解数量之间的关系,提高分析解答应用题的能力。
2、加强计算能力的训练
平时教学中发现学生的计算能力普遍较低,所以在复习的时候要特别加强计算能力的训练。学生计算能力的训练不只是机械重复的练习,而是要让学生掌握正确的计算方法和策略。让学生记住“一看二想三算”看清题目中的数、符号;想好计算的顺序,什么地方可以口算什么地方要笔算,哪里可以简便计算;最后动笔算。
3、加强与实际的联系
适应新课标的精神加强知识的综合应用以及与生活的联系,提高学生解决实际问题的能力。
4、讲练结合精心设计练习,把有营养的知识方法做成有味道的数学问题和练习吸引学生去探究
5、分层指导
针对学生的具体情况有针对性的进行复习,对于中差生和优生在复习上提出不同的要求,复习题分层,指导分层,充分体现问题练习的层次性,让不同的学生在复习中都自己新的收获。
6、后20%学生有针对性辅导。
七、注意的问题:
1、考虑到本册是小学阶段最后一次编排“位置与方向”内容,复习时应注意知识的综合整理,让学生对该内容形成较为完整和系统的认识。纵向来看,用数对确定物体的位置是一年级下册按行、定位置的一个深化,把第几行第几列的具体描述抽象成数对的形式,更为简洁明了;横向来看,则与四年级下册用方向和距离两个要素来确定位置是互为补充的两种方法,分别从不同角度出发来刻画物体的位置关系。复习时要引导学生在综合、对比的基础上进行整理,从而全面掌握确定物体位置的方法。
综合以前学过的平移、方位、路线图等知识,可使学生在复习过程中加强对前后知识内在联系的认识和把握,同时进一步巩固了用数对确定位置的方法。
2、 在小学阶段,学生先后学习了象形统计图、条形统计图、折线统计图和扇形统计图,这4种统计图都可用来呈现相应的统计数据,具有直观、形象的特点,便于人们进行统计判断和决策。复习时应注意引导学生联系以前学过的3种统计图,在对比中突出扇形统计图的特点,即能够很好地反映部分与整体的关系。把握好这一点后,再一些综合性的练习,让学生体会不同类型统计图的特点和作用,学会根据给定的数据合理选择统计图。比如,以同学的身高为例,不同年级同学的平均身高宜选用条形统计图,同一个学生在不同年级时的身高宜选用折线统计图,同一年级的同学不同身高所占的比例则宜选用扇形统计图。九义教材是把扇形统计图作为选学内容编排的,课标教材则是作为必学内容编排的,即该内容是要求学生掌握的。但在复习过程中不要拔高要求。课程标准对该内容的要求是:通过实例,认识扇形统计图。故复习时仅要求学生能认识扇形统计图的特征,能从给出的扇形统计图中提取相应的统计信息,作出简单的统计分析和判断即可,不要求学生绘制扇形统计图。
3、在复习时注重思想方法,如周长“化曲为直”,面积“化圆为方”和“极阴思想”,分数乘除法是化未知为已知,在沟通分数、比、百分数、除法的联系与区别是提高比较、类比、迁移、抽象、概括等,在复习圆的周长和面积时突出方法的推导过程,在回忆推导过程时对圆的相关概念进行辨析。
数学六年级上册复习 第4篇
一、复习内容
分数乘除法。
分数乘、除法属于分数的基本知识和技能,而且两者关系密切,教材将这两部分内容集中安排。教材首先通过一组题目,强调分数乘除法的关系,即分数除法是分数乘法的逆运算。同时对分数乘除法的计算方法进行了复习。比的相关概念、倒数的概念和计算、比的性质、比与分数及除法的关系等也是复习的重点,教材通过总复习的第2题和练习二十七的第3、4、5题进行了复习。
此外,用分数乘除法解决问题也是这部分的重点内容,主要包括求一个数的几分之几是多少的问题(含稍复杂的)、已知一个数的几分之几是多少求这个数的问题(含稍复杂的)等。教材把它们对照编排,便于学生弄清这几类问题的联系和区别,从而更好地掌握解决问题的思路,即先明确单位“1”,再看单位“1”是已知还是未知来确定解决问题的方法。为了让学生更好地掌握分析方法,总复习的第5题和练习二十七的第7题还安排了需要两次判断单位“1”的练习。
百分数。
百分数内容的复习重点放在百分数的应用,紧接在用分数乘除法解决问题后编排,这样可以使学生看到它们在结构、解题思路上的一致性,便于加强知识间的联系。百分数的概念没有单独复习,但它是百分数应用的基础,因此要注意进行复习。总复习的第6题是求常见的百分率的问题,通过给出计算公式,既复习百分数的意义、百分数与分数及小数的互化,又可复习求烘干率等类似问题。第7题为稍复杂的百分数的应用问题。练习二十七的第13、14、15题安排的是有关百分数的习题,其中第15题涉及国债、纳税、利率等内容的复习。
空间与图形。
这部分内容包括位置与圆的复习。
在第一学段中,学生已经会用第几组、第几个来表示物体的位置,本学期进一步学习用数对表示物体的位置。教材通过总复习的第8题复习用数对表示物体的位置,练习二十七的第1题安排了相应的练习。
本学期圆的认识包括直径、半径、π、轴对称图形等概念以及圆的周长和面积、圆的画法等内容,教材重点复习了圆的周长、面积计算公式和轴对称图形。总复习的第9题通过让学生复习计算公式的得出过程,加深学生对计算公式的理解和掌握,以使学生在解决具体问题时能根据不同条件和问题灵活地运用计算公式。第10题复习轴对称图形的概念,并运用概念判断两个图形是否是轴对称图形,加深学生对概念的理解和整理。直径、半径及其它们之间的关系等知识在练习二十七的第11题进行复习。
统计。
本学期统计的内容主要是认识扇形统计图。教材通过总复习第11题使学生进一步体会扇形统计图的特点,即能清楚地表明各部分数量同总数之间的关系,并根据给出的信息解决一些问题,以促使学生分析信息、解决问题能力的提高。
二、复习目标
通过总复习,系统、全面地复习和整理本学期所学知识,帮助学生构建合理的知识体系,以便学生更好地理解和掌握所学的概念、计算方法以及有关的规律性的知识,进一步发展学生的数概念、空间概念、统计概念,增强学生综合运用知识的能力,全面达到本学期的教学目标。
1、理解分数乘、除法的运算意义,掌握分数乘、除法的计算方法和分数四则混合运算的运算顺序;能正确计算分数乘、除法和分数四则混合运算(不超过三步)式题,能应用运算律和运算性质进行有关分数的简便计算;能应用分数乘法解决“求一个数的几分之几是多少”的简单实际问题,能列方程解决“已知一个数的几分之几是多少,求这个数”的简单实际问题,能用分数乘法和加、减法解决稍复杂的实际问题(不超过两步)。
2、理解比的意义和基本性质,能应用比的意义和基本性质求比值、化简比,能正确解决按比例分配的实际问题。
3、理解百分数的意义,能正确进行百分数与分数、小数的互化,会解决“求一个数是另一个数的百分之几”的简单实际问题。
4、认识圆,掌握圆的基本特征,理解直径与半径的相互关系;会用圆规画圆。
理解圆周率的意义,掌握圆周率的近似值,理解和掌握圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。
5、学生在整理与复习的过程中,进一步体会数学知识和方法的内在联系,能综合应用学过的数学知识和方法解释日常生活现象、解决简单实际问题,进一步发展数感、空间观念和统计观念,增强解决问题的策略意识和反思意识,提高解决问题的能力。
6、学生在整理与复习的过程中,进一步评价和反思自己在本学期的整体学习情况,体验与同学交流和获取知识的乐趣,感受数学的意义和价值,发展对数学的积极情感,增强学好数学的自信心。
三、复习重点
分数、百分数的计算(包括分数乘法、分数除法、分数四则混合运算)及应用题。圆的概念和周长、面积的计算。
四、复习难点
从学生平时的作业和单元检测情况来看最大的问题是分数、百分数稍复杂的除法应用题,其次是分数和百分数、圆的概念。
五、复习原则
1、充分调动学生自主学习的积极性,鼓励学生自觉地进行整理和复习,提高复习能力。
2、充分体现教师的指导作用,知识的重点和难点要适时讲解点拨,保证复习效果。
3、充分体现因材施教分类推进的教育原则,针对不同层次的学生设计不同的教学内容和教学方法,查漏补缺,集中答疑,提高复习效果。
六、复习方法
1、带领学生按单元整理复习,巩固基础知识。
教师要按单元抓准知识的重难点,进行相关知识的整合与链接,使之形成完整的知识网络。例如应用题的复习,可由简单的分数应用题链接到稍复杂的复合应用题,将知识整合链接起来,进一步理解数量之间的关系,提高分析解答应用题的能力。
2、加强计算能力的训练
平时教学中发现学生的计算能力普遍较低,所以在复习的时候要特别加强计算能力的训练。学生计算能力的训练不只是机械重复的练习,而是要让学生掌握正确的计算方法和策略。让学生记住“一看二想三算”看清题目中的数、符号;想好计算的顺序,什么地方可以口算什么地方要笔算,哪里可以简便计算;最后动笔算。
3、加强与实际的联系
适应新课标的精神加强知识的综合应用以及与生活的联系,提高学生解决实际问题的能力。
4、讲练结合精心设计练习,把有营养的知识方法做成有味道的数学问题和练习吸引学生去探究
5、分层指导
针对学生的具体情况有针对性的进行复习,对于中差生和优生在复习上提出不同的要求,复习题分层,指导分层,充分体现问题练习的层次性,让不同的学生在复习中都自己新的收获。
6、后20%学生有针对性辅导。
七、注意的问题:
1、考虑到本册是小学阶段最后一次编排“位置与方向”内容,复习时应注意知识的综合整理,让学生对该内容形成较为完整和系统的认识。纵向来看,用数对确定物体的位置是一年级下册按行、列确定位置的一个深化,把第几行第几列的具体描述抽象成数对的形式,更为简洁明了;横向来看,则与四年级下册用方向和距离两个要素来确定位置是互为补充的两种方法,分别从不同角度出发来刻画物体的位置关系。复习时要引导学生在综合、对比的基础上进行整理,从而全面掌握确定物体位置的方法。综合以前学过的平移、方位、路线图等知识,可使学生在复习过程中加强对前后知识内在联系的认识和把握,同时进一步巩固了用数对确定位置的方法。
2、 在小学阶段,学生先后学习了象形统计图、条形统计图、折线统计图和扇形统计图,这4种统计图都可用来呈现相应的统计数据,具有直观、形象的特点,便于人们进行统计判断和决策。复习时应注意引导学生联系以前学过的3种统计图,在对比中突出扇形统计图的特点,即能够很好地反映部分与整体的关系。把握好这一点后,再一些综合性的练习,让学生体会不同类型统计图的特点和作用,学会根据给定的数据合理选择统计图。比如,以同学的身高为例,不同年级同学的平均身高宜选用条形统计图,同一个学生在不同年级时的身高宜选用折线统计图,同一年级的同学不同身高所占的比例则宜选用扇形统计图。九义教材是把扇形统计图作为选学内容编排的,课标教材则是作为必学内容编排的,即该内容是要求学生掌握的。但在复习过程中不要拔高要求。课程标准对该内容的要求是:通过实例,认识扇形统计图。故复习时仅要求学生能认识扇形统计图的特征,能从给出的扇形统计图中提取相应的统计信息,作出简单的统计分析和判断即可,不要求学生绘制扇形统计图。
3、在复习时注重思想方法,如周长“化曲为直”,面积“化圆为方”和“极阴思想”,分数乘除法是化未知为已知,在沟通分数、比、百分数、除法的联系与区别是提高比较、类比、迁移、抽象、概括等,在复习圆的周长和面积时突出方法的推导过程,在回忆推导过程时对圆的相关概念进行辨析。
数学六年级上册复习 第5篇
一、学情分析:
1、本班学生的听课习惯已初步养成,思想要求上进,大部分学生学习态度端正,学习能力强,学习积极性高,学习兴趣浓厚。
2、已经接触和积累了相当数量的数学知识,形成了相关的数学技能,也能对生活中有关数学问题进行思考与分析,智力上已达到一个“综合发展”的层次。
3、不可否认还缺乏整体性、综合性和发展性的认识。所以在这期末阶段里,组织学生全面复习和梳理所学的数学知识,显得十分必要。尤其是对于部分“学习困难学生”,总复习更具有重要意义。
4、另一部分学生表现为学习目的不明确,学习态度不端正,作业经常拖拉甚至不完成。从一学期的学习表现看,学生的计算与审题有待进一步训练与提高。故在复习里,在此方面要多下苦功,面向全体学生,全面提高学生的学习成绩。
二、复习目标:
1、使学生进一步牢固理解并掌握圆周长和圆面积的计算公式,能够正确计算圆的周长和面积,能应用圆的周长和面积公式解决常见的实际问题;进一步理解轴对称的意义,会画对称轴。
2、使学生能够解答比较容易的一到二步计算的分数、百分数应用题,提高综合运用所学知识解决比较简单的实际问题能力,能够根据应用题的具体情况,灵活地选用算术解法和方程解法,提高解题能力。
3、能有条理地表达图形的平移或旋转的变换过程,发展空间观念;经历运用平移、旋转或作轴对称图形进行图案设计的过程,能灵活运用平移、旋转和轴对称在方格纸上设计图案;结合欣赏和设计美丽的图案,感受图形世界的神奇。
4、能根据需要选择复式条形统计图、复式折线统计图有效地表示数据;能读懂简单的复式统计图,根据统计结果做出简单的判断和预测,与同伴进行交流。
5、能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。
三、复习内容:
1、数与代数:第二单元:分数混合运算;第四单元:百分数的应用第六单元:比的认识第七单元:百分数的应用
2、空间与图形:第一单元:圆第三单元:观察物体。
3、统计与概率:第五单元:数据处理
4、综合应用:数学好玩
本学期总复习可以分为三个部分。第一部分是整理本书的知识框架。目的是巩固和加深对所学知识的理解,沟通各部分知识的内在联系。教学时,教师可以先安排一些时间,让学生按照“数与计算、空间与图形以及统计”三大部分自己回顾所学过的内容,对所学过的知识用自己喜欢的方式加以整理,整理后全班交流有特色的整理方式。
第二部分是整理学习过程中解决问题的方法以及学习体会。教师应组织学生总结学习过程中解决的一些问题,反思解决这些问题的方法,提高学生解决问题的能力。教师还应组织学生交流学习过程中的收获和不足。
第三部分是巩固练习。教师可以结合总复习的题目,根据学生的实际情况确定复习的重点,使复习具有针对性。
四、复习重难点
本册的重点是认识圆,分数混合运算,百分数应用题和比的认识
1进一步理解分数乘、除法的意义,掌握分数乘、除法的计算法则,比较熟练地计算分数乘、除法。能正确计算分数混合运算及解决应用题。
2能正确解答分数、百分数应用题,进一步提高分析判断、推理能力。
3认识圆,掌握圆的特征,掌握圆的周长和面积、计算公式,并能正确的计算。
4、能运用比的意义,解决按照一定的比进行分配的实际问题。
本册的复习难点
本册的复习难点是百分数应用题、圆的周长面积计算和比的应用。
五、复习方法
讲解法、归纳整理法、练习法、讨论交流法。
1、带领学生按单元整理复习,巩固基础知识。
教师要按单元抓准知识的重难点,进行相关知识的整合与链接,使之形成完整的知识网络。例如应用题的复习,可由简单的分数应用题链接到稍复杂的复合应用题,将知识整合链接起来,进一步理解数量之间的关系,提高分析解答应用题的能力。
2、加强计算能力的训练
平时教学中发现学生的计算能力普遍较低,所以在复习的时候要特别加强计算能力的训练。学生计算能力的训练不只是机械重复的练习,而是要让学生掌握正确的计算方法和策略。让学生记住“一看二想三算”看清题目中的数、符号;想好计算的顺序,什么地方可以口算什么地方要笔算,哪里可以简便计算,最后动笔算。
3、加强与实际的联系
适应新课标的精神加强知识的综合应用以及与生活的联系,提高学生解决实际问题的能力。
4、讲练结合
有讲有练,在练中发现问题。
5、分层指导
针对学生的具体情况有针对性的进行复习,对于后进生和优生在复习上提出不同的要求,复习题的设计要分层,指导要分层。
六、复习时间安排:
第一阶段:整体复习各个单元基础知识和能力的复习(书上总复习)
1、正确完成分数混合运算,解决稍复杂的分数应用题。百分数的应用。用百分数的意义和方程解决简单的百分数问题
2、稍复杂的分数百数应用题
3、比的意义。比的化简。比的应用
4、圆的周长和面积
5、数据处理
第二阶段:综合练习,讲练结合(期末特训)
给学生一些综合性的测试卷,通过练习发现问题,并及时进行指导。
第三阶段:分层复习,查漏补缺
给后进生特别的辅导和指导,查漏补缺。给优等生多做一些实践性较强的习题,提高分析解答能力。
数学六年级上册复习 第6篇
一、指导思想:
根据本学期工作计划结合班级学生及数学学习的具体情况,以素质教育为核心,以提高迅速实际数学能力为重点,力求挖掘学生的积极性和学习潜在能力,提高学生的数学成绩。
二、复习形式:
分类复习、综合复习
三、复习内容:
本册教材9个单元:
1、分数乘法2、位置与方向(二) 3、分数除法4、比5、圆 6、百分数(一)7、扇形统计图8、数学广角—数与形9、总复习
复习时按照整册教材的知识体系分——分数乘法和除法以及比和百分数(一)、圆和位置与方向(二)、扇形统计图和数学广角这三大块来进行知识的梳理。
四、复习目标:
1、通过整理和复习,使连贯分数乘法、除法的知识点,对分数计算有整体的认识,建立有关分数综合计算的认知结构。
2、通过整理和复习,使学生进一步巩固位置与方向可以利用方向和距离来确定物体具体位置,增强学生数学联系生活的理念。
3、通过整理和复习,使学生进一步圆特征,圆的周长和面积的相关知识和计算,在观察物体中加深对物体和相应视图的认识,进一步发展空间观念。
4、通过整理和复习,使学生进一步掌握统计的基本知识和方法,读懂扇形统计图,会根据需要选择不同的统计图。
5、通过整理和复习,使学生进一步提高综合运用所学知识解决实际问题的能力,在解决实际问题的过程中进一步体会数学的价值。
6、通过整理和复习,使学生经历回顾本学期的学习情况,以及整理知识和学习方法的过程,激发学生主动学习的愿望,进一步培养反思的意识和能力。
五、具体安排:(略)
六、复习措施:
1、教会学生复习方法,先全面复习每一单元,再由学生主动重点复习有关重点内容。
2、采用多种方法,比如学生出题,抢答,抽查,学生互批等方法,提高学习兴趣。
3、加强补差,让优等生帮助后进生。
4、课堂上教会学生抓住每单元的知识要点,重点突破,加强解决问题能力的培养,并相继进行口算能力的培养。
数学六年级上册复习 第7篇
一、指导思想
通过总复习,把本学期所学的知识进一步系统化,使学生对所学的概念、计算法则、规律性知识得到进一步巩固,计算能力和解决实际问题的能力等得到进一步地提高,全面达到本学期的教学目标。
二、复习内容
1、 分数乘法
2、位置与方向
3、分数除法
4、比和比的应用
5、圆的面积和周长的计算
6、百分数的意义及应用
7、扇形统计图
8、数学广角(数与形)
9、总复习
三、复习目标
1、使学生进一步加深对方程及其基本性质的理解,能正确理解形如ax±b=c、ax÷b=c、ax±bx=c的方程,能正确分析和理解简单实际问题中数量之间的相等关系,会列方程解答需要两、三步计算的实际问题。
2、使学生进一步理解分数乘、除法的运算意义,掌握分数乘、除法的计算方法和分数四则混合运算的运算顺序;能正确计算分数乘、除法和分数四则混合运算(不超过三步)式题,能应用运算律和运算性质进行有关分数的简便计算;能应用分数乘法解决“求一个数的几分之几是多少”的简单实际问题,能列方程解决“已知一个数的几分之几是多少,求这个数”的简单实际问题,能用分数乘法和加、减法解决稍复杂的实际问题(不超过两步)。
3、使学生进一步理解比的意义和基本性质,能应用比的意义和基本性质求比值、化简比,能正确解决按比例分配的实际问题。
4、使学生进一步理解百分数的意义,能正确进行百分数与分数、小数的互化,会解决“求一个数是另一个数的百分之几”、“ 求一个数比另一个数的多(少)百分之几”的简单实际问题。
5、使学生在整理与复习的过程中,进一步体会数学知识和方法的内在联系,能综合应用学过的数学知识和方法解释日常生活现象、解决简单实际问题,进一步发展数感、空间观念和统计观念,增强解决问题的策略意识和反思意识,提高解决问题的能力。
8、使学生在整理与复习的过程中,进一步评价和反思自己在本学期的整体学习情况,体验与同学交流和获取知识的乐趣,感受数学的意义和价值,发展对数学的积极情感,增强学好数学的自信心。
四、复习重点
分数的计算(包括分数乘法、分数除法、分数四则混合运算)。
五、复习难点
解决问题的策略。
六、复习原则
1、充分调动学生自主学习的积极性,鼓励学生自觉地进行整理和复习,提高复习能力。
2、充分体现教师的指导作用,知识的重点和难点要适时讲解点拨,保证复习效果。
3、充分体现因材施教分类推进的教育原则,针对不同层次的学生设计不同的教学内容和教学方法,查漏补缺,集中答疑,提高复习效果。
七、复习方法
1、带领学生按内容整理复习,巩固基础知识。
教师要按单元抓准知识的重难点,进行相关知识的整合与链接,使之形成完整的知识网络。例如应用题的复习,可由简单的分数应用题链接到稍复杂的复合应用题,将知识整合链接起来,进一步理解数量之间的关系,提高分析解答应用题的能力。
2、加强计算能力的训练
平时教学中发现学生的计算能力普遍较低,特别是六(2)班,所以在复习的时候要特别加强计算能力的训练。学生计算能力的训练不只是机械重复的练习,而是要让学生掌握正确的计算方法和策略。让学生记住“一看二想三算”看清题目中的数、符号;想好计算的顺序,什么地方可以口算什么地方要笔算,哪里可以简便计算;最后动笔算。
3、加强与实际的联系
适应新课标的精神加强知识的综合应用以及与生活的联系,提高学生解决实际问题的能力。
4、讲练结合
有讲有练,在练中发现问题。
5、分层指导
针对学生的具体情况有针对性的进行复习,对于中差生和优生在复习上提出不同的要求,复习题分层,指导分层。
数学六年级上册复习 第8篇
一、分数乘法
(一)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:
a × b = b × a
乘法结合律:
( a × b )×c = a × ( b × c )
乘法分配律:
( a + b )×c = a c + b c a c + b c = ( a + b )×c
二、分数乘法的解决问题
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、找单位“1”:
在分率句中分率的前面; 或 “占”、“是”、“比”的后面
2、求一个数的几倍:
一个数×几倍; 求一个数的几分之几是多少:
一个数× 。
3、写数量关系式技巧:
(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”
(2)分率前是“的”:
单位“1”的量×分率=分率对应量
(3)分率前是“多或少”的意思:
单位“1”的量×(1 分率)=分率对应量
三、倒数
1、倒数的意义:
乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:
(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:
把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
因为1×1=1;0乘任何数都得0, (分母不能为0)
4、 对于任意数 ,它的倒数为 ;非零整数 的倒数为 ;分数 的倒数是 ;
5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
分数除法
一、 分数除法
1、分数除法的意义:
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
3、 规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;
(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、 “ ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。
二、分数除法解决问题
(未知单位“1”的量(用除法):
已知单位“1”的几分之几是多少,求单位“1”的量。
)
1、数量关系式和分数乘法解决问题中的关系式相同:
(1)分率前是“的”:
单位“1”的量×分率=分率对应量
(2)分率前是“多或少”的意思:
单位“1”的量×(1 分率)=分率对应量
2、解法:(建议:最好用方程解答)
(1)方程:
根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):
分率对应量÷对应分率 = 单位“1”的量
3、求一个数是另一个数的几分之几:就 一个数÷另一个数
4、求一个数比另一个数多(少)几分之几:
① 求多几分之几:大数÷小数 – 1 ② 求少几分之几:
1 - 小数÷大数
或① 求多几分之几(大数-小数)÷小数② 求少几分之几:(大数-小数)÷大数
三、比和比的应用
(一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10= (比值通常用分数表示,也可以用小数或整数表示)
∶ ∶ ∶ ∶
前项 比号 后项 比值
3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:
路程÷速度=时间。
4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:
比 前 项 比号“:” 后 项 比值
除 法 被除数 除号“÷” 除 数 商
分 数 分 子 分数线“—” 分 母 分数值
7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
化简比:
①用比的前项和后项同时除以它们的最大公因数。
(1) ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。注意: 最后结果要写成比的形式。
如:
15∶10 = 15÷10 = = 3∶2
按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
如:
已知两个量之比为 ,则设这两个量分别为 。
6、 路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)
工作总量一定,工作效率和工作时间成反比。
(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)
圆
一、 认识圆
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的 。
用字母表示为:d=2r或r =
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:
角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:
长方形
只有3条对称轴的图形是:
等边三角形
只有4条对称轴的图形是:
正方形;
有无数条对称轴的图形是:
圆、圆环。
二、圆的周长
1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。
2、圆周率实验:
在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai) 表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式:
C= πd d = C ÷π
或C=2π r r = C ÷ 2π
5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
(1) 周长的一半:等于圆的周长÷2 计算方法:2π r ÷ 2 即 π r
(2)半圆的周长:等于圆的周长的一半加直径。
计算方法:πr+2r
三、圆的面积
1、圆的面积:圆所占平面的大小叫做圆的面积。
用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:
(1)、用逐渐逼近的转化思想:
体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。
(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)、拼出的图形与圆的周长和半径的关系。
圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
因为:
长方形面积 = 长 × 宽
所以:
圆的面积 = 圆周长的一半 × 圆的半径
S圆 = πr × r
圆的面积公式:
S圆 = πr2
4、环形的面积:
一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度.)
S环 = πR²-πr² 或
环形的面积公式:
S环 = π(R²-r²)。
5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小的倍数是这倍数的平方倍。
例如:
在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。
6、两个圆:
半径比 = 直径比 = 周长比;而面积比等于这比的平方。
例如:
两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9
7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π
8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。
9、确定起跑线:
(1)、每条跑道的长度 = 两个半圆形跑道合成的圆的周长 + 两个直道的长度。
(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)
(3)、每相邻两个跑道相隔的距离是:
2×π×跑道的宽度
(4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
11、常用各π值结果:
π =
2π =
3π =
5π =
6π =
7π =
9π =
10π =
16π =
36π =
64π =
96π =
4π = 8π = 25π =
12、常用平方数结果
= 121 = 144 = 169 = 196 = 225
= 256 = 289 = 324 = 361
百分数
一、百分数的意义和写法
1、百分数的意义:表示一个数是另一个数的百分之几。
百分数是指的两个数的比,因此也叫百分率或百分比。
2、 千分数:表示一个数是另一个数的千分之几。
3、 百分数和分数的主要联系与区别:
(1) 联系:都可以表示两个量的倍比关系。
(2) 区别:
①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;
分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;
分数的分子不能是小数,只能是除0以外的自然数。
4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。
二、百分数和分数、小数的互化
(一)百分数与小数的互化:
1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
百分数化成小数:把小数点向左移动两位,同时去掉百分号。
(二)百分数的和分数的互化
1、百分数化成分数:
先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。
2、分数化成百分数:
① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(三)常见的分数与小数、百分数之间的互化
= = 50% = = 20% = = %
= = 25% = = 40% = = %
= = 75% = = 60% = = %
= = % = = 80% = = %
= = 4﹪ = = 8﹪ = = 12﹪ = = 16﹪
三、用百分数解决问题
(一)一般应用题
1、常见的百分率的计算方法:
①合格率 = ②发芽率 =
③出勤率 = ④达标率 =
⑤成活率 = ⑥出粉率 =
⑦烘干率 = ⑧含水率 =
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。(一般出粉率在70、80%,出油率在30、40%。)
2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:
数量关系式和分数乘法解决问题中的关系式相同:
(1)分率前是“的”:
单位“1”的量×分率=分率对应量
(2)分率前是“多或少”的意思:
单位“1”的量×(1 分率)=分率对应量
3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
解法:(建议:最好用方程解答)
(1)方程:
根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):
分率对应量÷对应分率 = 单位“1”的量
4、求一个数比另一个数多(少)百分之几的问题:
两个数的相差量÷单位“1”的量 × 100% 或:
① 求多百分之几:(大数-小数)÷小数
② 求少百分之几:(大数-小数)÷大数
(二)、折扣
1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。
几折就表示十分之几,也就是百分之几十。例如八折= =80﹪,六折五﹪
2、一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%
(三)、纳税
1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
3、应纳税额:缴纳的税款叫做应纳税额。
4、税率:应纳税额与各种收入的比率叫做税率。
5、应纳税额的计算方法:应纳税额 = 总收入 × 税率
(四)利息
1、存款分为活期、整存整取和零存整取等方法。
2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
3、本金:存入银行的钱叫做本金。
4、利息:取款时银行多支付的钱叫做利息。
5、利率:利息与本金的比值叫做利率。
6、利息的计算公式:利息=本金×利率×时间
7、注意:如要上利息税(国债和教育储藏的利息不纳税),则:
税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)
扇形统计图
一、扇形统计图的意义:
用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:
1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)
圆柱与圆锥
一、圆柱的特征:
1、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。
2、圆柱的高:圆柱两个底面之间的距离叫做高。圆柱的高有无数条。
3、圆柱的侧面展开图:圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
4、圆柱的侧面积 = 底面周长×高 即S侧=Ch 或 2πr×h
5、圆柱的表面积 = 圆柱的侧面积 +底面积×2 即S表=S侧+S底×2或2πr×h + 2×πr2
6、圆柱的体积=圆柱的底面积×高, 即V=sh或 πr2×h
7、将一张长方形围成圆柱有两种方法,将一张长方形进行旋转一般也有两种。
(进一法:实际中,使用的材料都要比计算的结果多一些 ,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)
二、圆锥的特征:
1、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
2、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)
3、把圆锥的侧面展开得到一个扇形。4、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥= Sh 或V锥= πr2×h
5、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
6、圆柱和圆锥的特征
圆柱 圆锥
底面 两个底面完全相同,都是圆形。
一个底面,是圆形。
侧面 曲面,沿高剪开,展开后是长方形。
曲面,沿顶点到底面圆周上的一条线段剪开,展开后是扇形。
高 两个底面之间的距离,有无数条。
顶点到底面圆心的距离,只有一条。
常用单位换算
长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算
1元=10角 1角=10分 1元=100分
时间单位换算
1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒
数学六年级上册复习 第9篇
一、复习目标:
牢固地掌握本学期所学的概念、法则、公式,能用来指导计算和解决一些实际问题。
通过复习,使学生能比较熟练地计算分数乘法和分数除法,能正确地计算分数四则混合运算式题。
能正确地解答分数、百分数应用题,进一步提高分析判断、推理能力。
认识圆,掌握圆的特征,掌握圆的周长和面积、计算公式,并能正确的计算。
二、复习重点、难点:
分数四则混合运算和分数、百分数应用题是复习的重点。分数四则混合运算综合性强,演算过程复杂,是分数四则计算能力的综合体现。
分数、百分数应用题的复习重点在通过对照、比较,弄清基本应用题的结构特征,明确解题思路和解题方法。
较复杂的分数、百分数应用题是本单元的难点。
三、复习要求:
使学生进一步熟练地掌握分数乘、除法的计算法则,提高分数四则混合运算的能力。
使学生进一步认识、理解分数乘、除法应用题的数量关系,更好地掌握分数乘、除法应用题的解题思路和解题规律,提高思维能力和解答应用题的能力。
使学生进一步认识比的意义和基本性质,能正确地、比较熟练地求比值和化简比,能用比的知识解答有关应用题,进一步沟通比、分数和除法之间的关系,提高灵活解题能力。
使学生进一步认识折线统计图的意义和特点,能在横轴、纵轴图里画出统计图的折线,表示出数据;能正确对统计图的数据作简单分析。
使学生进一步认识百分数的意义,加深理解百分数应用题的数学关系和解题方法,并能正确地应用百分数的知识解决一些简单的实际问题。
使学生进一步认识圆的特征,加深理解和掌握圆的周长、面积及其计算方法,能根据具体条件计算圆的周长和面积,能联系实际解决一些简单的问题。
推荐访问: