三年级知识点总结数学第1篇第二、四单元万以内的加法和减法1、最大的几位数和最小的几位数:最大的一位数是9,最小的一位数是最大的二位数是99,最小的二位数是10最大的三位数是999,最小的三位数是100下面是小编为大家整理的三年级知识点总结数学14篇,供大家参考。
三年级知识点总结数学 第1篇
第二、四单元 万以内的加法和减法
1、最大的几位数和最小的几位数:
最大的一位数是9, 最小的一位数是
最大的二位数是99, 最小的二位数是10
最大的三位数是999, 最小的三位数是100
最大的四位数是9999, 最小的四位数是1000
最大的五位数是99999, 最小的五位数是10000
最大的三位数比最小的四位数小1。
2、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。
3、两个三位数相加的和:可能是三位数,也有可能是四位数。
4、加法公式:
加数 + 加数 = 和
和 - 另一个加数 = 加数
5、减法公式:
被减数 - 减数 = 差
差 + 减数 = 被减数 或 被减数 = 差 + 减数
被减数 - 差 = 减数
6、口算时:
例:(1)35+48,先算35+40=75,再算75+8=83。
(2)72-28,先算72-20=52,再算52-8=44
或 先算72-30=42,再算42+2=44
7、问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下” “应准备”等词语时,都是用估算。
第五单元 倍的认识
求一个数是另一个数的几倍是多少? 用除法计算:
一个数÷另一个数=倍数
36是4的几倍? 36÷4=9
已知一个数的几倍是A,求这个数。
用除法计算:
A÷倍数=这个数
已知一个数的5倍数是35,求这个数? 35÷5=7
求一个数的几倍是多少? 用乘法计算:
一个数×倍数= 结果
9的6倍是多少? 9×6=54
三年级知识点总结数学 第2篇
倍比问题
【含义】 有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】 总量÷一个数量=倍数 另一个数量×倍数=另一总量 【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。
例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?
例2 今年植树节这天,某小学300生共植树400棵,照这样计算,全县48000生共植树多少棵?
例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?
相遇问题
【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。
【数量关系】 相遇时间=总路程÷(甲速+乙速)
总路程=(甲速+乙速)×相遇时间
【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
三年级知识点总结数学 第3篇
第五单元倍的认识
1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。
2、求一个数是另一个数的几倍用除法:
一个数÷另一个数=倍数
3、求一个数的几倍是多少用乘法; 这个数×倍数=这个数的几倍
第六单元多位数乘一位数
1、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。
2、一个因数中间有0的乘法:
① 0和任何数相乘都得0;
② 因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。
③一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个
3、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程 每节车厢的人数×车厢的数量=全车的人数
路程÷时间=速度
路程÷速度=时间
5、(关于“大约)应用题:
问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下”,条件中无论有没有大约都是求近似数,用估算。(估算时要用 ≈)
例:387×5≈
把387看作390(个位是7,四舍五入,7大于5所以进1,看作390)再算390×
所以:387×5≈1950
第七单元 长方形和正方形
1、有4条直的边和4个角的封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式:
长方形的周长=(长+宽)×2
变式:①长方形的长=周长÷2-宽
②长方形的宽=周长÷2-长
正方形的周长=边长×4
变式:
正方形的边长=周长÷4
三年级知识点总结数学 第4篇
位置:所在或所占的地方。
方向:指东,西,南,北等方位。
除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c/b,读作c除以b(或b除c)。
其中,c叫做被除数,b叫做除数,运算的结果a叫做商。
除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。
余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
商不变性质:被除数和除数同时乘或除以一个非零自然数,商不变。
除法的性质:一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)。
被除数、除数、商的关系:被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍;除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。
笔算除法:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。
第一级运算:加法和减法叫做第一级运算。
第二级运算:乘法和除法叫做第二级运算。
数据:数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。
数据分析:数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。
数据分析的步骤和应用:数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:
(1)探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。
(2)模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。
(3)推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。
平均数:指在一组数据中所有数据之和再除以数据的个数。平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标。
解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。
在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
二十四时计时法
(1)分段计时法(十二时计时法):深夜12时是一日的"开始,1天的24小时又分为两段,每段12小时。从深夜12时起到中午12时叫做上午,再从中午12时起到深夜12时叫做下午。生活中通常采用这种计时法。
(2)二十四时计时法:这是是广播电台、车站、邮电局等部门采用的0到24时计时法,按照这种计时法,下午1时就是13:00,下午2时就是14:00……夜里12时就是24:00,又是第二天的0:
乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
例:10(因数)×(乘号)200(因数)=(等于号)20XX(积)
乘法的运算定律:
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展,运算的对象从整数发展为更一般群。
群中的乘法运算不再要求交换律。最有名的非交换例子,就是哈密尔顿发现的四元数群。但是结合律仍然满足。
(1)乘法交换律:a×b=b×a
(2)乘法结合律:(a×b)×c=a×(b×c)
(3)乘法分配律:(a+b)×c=a×c+b×c
面积:物体的表面—平面图形的大小,叫做它们的面积。
常用的面积单位有平方厘米、平方分米和平方米。
(1)边长是1厘米的正方形,面积是1平方厘米。
(2)边长是1分米的正方形,面积是1平方分米。
(3)边长是1米的正方形,面积是1平方米。
一般测量较大的面积用到公顷和平方千米。
(1)边长是100米的正方形,面积是1公顷。
(2)边长是1千米的正方形,面积是1平方千米。
面积计算方法:
长方形:S=ab{长方形面积=长×宽}
正方形:S=a2{正方形面积=边长×边长}
平行四边形:S=ab{平行四边形面积=底×高}
三角形:S=ab÷2{三角形面积=底×高÷2}
梯形:S=(a+b)×h÷2{梯形面积=(上底+下底)×高÷2}
圆形(正圆):S=πr2{圆形(正圆)面积=圆周率×半径×半径}
面积计量单位及进率:
1平方千米(k㎡)=100公顷(ha)1平方千米=1000000平方米(㎡)
1公顷=10000平方米1平方米=100平方分米(d㎡)
1平方分米=100平方厘米(c㎡)。
公顷:公顷的单位符号用“h㎡”表示,其中h表示百米,h㎡的含义就是百米的平方,也就是10000平方米,即1公顷。
小数:小数由整数部分、小数部分和小数点组成。
当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数小数是十进制分数的一种特殊表现形式。
分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。
小数的基本性质:小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。
而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍。
小数写法:整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。
小数的读法:
(1)按照分数的读法来读.带小数的整数部分按整数读法读;小数部分按分数读法读。
例:读作百分之三十八,读作十四又百分之五十六。
(2)整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个
例:读作零点四五;读作五十六点零三二;读作一点零零零五。
三年级知识点总结数学 第5篇
北师大版
第五单元 周长
1、围成一个图形所有边的长度总和或者说绕一个图形边线一周的总和就是这个图形的周长。
2、不规则物体或图形的测量方法:绳子测量法。
3、规则物体或图形的测量方法:(1)绳测法;(2)直尺测量法。
4、求长方形的周长必须满足两个条件:已知长和宽的长度。5、长方形周长的计算(1)长方形的周长=长+宽+长+宽(2)长方形的周长=长×2+宽×2(3)长方形的周长=(长+宽)×2(4)已知长方形的周长和宽,求长长=(周长-宽×2)÷2长=周长÷2-宽(5)已知长方形的周长和长,求宽宽= (周长-长×2)÷2宽=周长÷2-长
6、正方形周长的计算(1)把4条边长加起来;(2)用一条边长乘以4,即正方形的周长=边长×4
7、靠墙围成的长方形有两种情况:(1)长边靠墙;(2)宽边靠墙。
8、围成的两种长方形,宽边靠墙比长边靠墙所需的围栏多。
第六单元 乘法
1、两、三位数乘一位数(不进位)的笔算方法从个位算起,用一位数依次去乘多位数每一位的数;与哪一位上的数相乘,就在那一位的下面写积。
2、在列竖式计算两位数乘一位数时,一定要用一位数依次去乘两位数中每个数位上的数。
3、两、三位数乘一位数(进位)的笔算乘法:列竖式计算时,先将一位数与多位数对齐,从个位算起,哪一位上相乘满几十就向前一位进几。
4、两位数乘一位数(进位)的笔算,要把进位的数写到正确的位置上,不要写在积中。
5、两、三位数乘一位数(连续进位)的笔算方法:从个位算起,用一位数依次去乘两位数每一位上的数,哪一位上乘得的积满几十,就向前一位进几。计算时每一步都不要忘记加上进位数。
6、笔算乘法时,哪一位上满十就向前一位进1;向哪一位进1,就在那一位加1。
7、0和任何数相乘都等于0。
8、一个乘数末尾有0的乘法的计算方法:(1)用这个乘数0前面的数乘另一个乘数;(2)看这个乘数末尾有几个0,就在积的末尾添上几个0。
9、在计算乘数中间有0的乘法时,从个位算起,用一个数依次去乘多位数每一位上的数,哪一位上的乘积是0,要在那一位上写0占位,如果有进上来的数必须加上。
10、结论(1)因数的末尾有0,乘积中一定有0。(2)因数的中间有0,乘积中不一定有0。
11、连乘的估算方法:尽可能将其中两个数的乘积估成整十,整百数,再与第三个数相乘。
12、连乘的运算顺序:按从左到右的顺序依次计算。
13、三个数连乘时,可以先把前两个数相乘,再乘第三个数;也可以先把后两个数相乘,再乘第一个数;还可以把任意两个数交换位置后再相乘。
第七单元 年月日
一、时间
1、年平年:全年365天闰年:全年366天2、月大月:1、3、5、7、8、10、12月小月:4、6、9、11月平月:平年2月28天,闰年2月29天3、日学会看日历,知道某年某月是星期几。4、钟表:24 时记时法;12时记时法二、重点知识1、一年有12个月。
2、“1、3、5、7、8、10、12月”每月有31天,为大月;“4、6、9、11月”每月有30天,是小月;2月只有28天或29天,2月既不是大月,也不是小月。
3、一个月只有28天时,这个月只有四个星期一至星期日;一个月有29天时,这个月中星期一至星期日的某一个是5天;一个月有30天时,这个月中星期一至星期日的某2个是5天。
4、2月29日是个特殊的日子,只有4年才出现。
5、每四年中有一年的二月份有29天,其他年份的二月份都只有28天。
6、平年、闰年(1)公历年份是4的倍数的是闰年,不是4的倍数的是平年;公历年份是整百年的,必须是400的倍数的才是闰年。(2)判断一个整百年份是不是闰年,要看这个年份数是不是400的倍数。如果是整数倍就是闰年,否则就是平年。(3)2月份是28天的是平年,2月份是29天的是闰年,平年一年有365天,闰年一年有366天。(4)平年一年有52个星期零1天,闰年一年有52个星期零2天。平年:365÷(天)闰年:366÷(天)
7、推算几周年的的时间问题,可用终止年份直接减去起始年份,所得的差即为所求。
8、24时记时法在一日(天)里,钟表上的时针正好走2圈,共计24时。所以经常采用从0到24时的计时法,通常叫作24时计时法
10、计算从一个时刻到另一个时刻所经过的时间,可以根据钟表推算,也可以用终止时刻减去起始时刻。
11、计算中午12时的经过时间,要么把时间都换算成24时计时法来计算,要么先算中午12时以前有多长时间,再加上下午的一段时间。
12、普通计时法在表述时要加上限制词上午、下午或者晚上等,这样才能将时间准确的表达出来。
13、同一段距离,测量方法和测量工具不同,在测量的结果相同的情况下,选简便的方法比较合适。
14、地面上一定范围内的直线距离可以直接用直尺来测量。
5、解决搭配问题也可以用乘法计算,也能得到有多少种不同的搭配方法。
16、数路线问题实际上也属于搭配问题,在确定行走路线时,一定不要重复和遗漏。
17、日历中的数有很多规律:如横向左边的数比右边的数少1;纵向上面的数比下面少7等。
第八单元 认识小数
1、像“,,,,”这样的数,都是小数。“.”叫作小数点。
2、小数由整数部分、小数点和小数部分组成。
3、一个小数的小数部分有几位数,它就是几位小数。
4、读小数时,整数部分按整数的读法读,中间的小数点读作“点”,小数部分依次读出每个数位上的数。
5、写小数时,要先写整数部分,按照整数的写法来写,然后在个位的右下角点上小数点,最后写小数部分,依次写出各个数位上的数。
6、把以元为单位的小数改写成以元、角、分的数的方法小数的整数部分是几,就改写成几元;小数后的第一位是几,就改写成几角;小数点后的第二位是几,就改写成几分。若哪一位上是0,那一位就省略不写。
7、把带有元、角、分的数改写成一元为单位的小数时,元与小数的整数部分相对应,角与小数点后的第一位数相对应,分与小数点后的第二位数相对应。
8、比较小数大小的方法先比较整数部分,整数部分大的这个小数就大;如果整数部分相同,就比较小数点后的第一一位,小数点后的第一位上的数大的这个小数就大;如果相同就比较小数点后的第二位,以此类推。
9、比较三个或三个以上小数的大小和比较两个小数大小的方法相同,先比较整数部分,整数部分相同,再依次比较小数部分。
10、小数加法的计算方法小数相加,先把小数点对齐(把相同数位对齐),再按照整数加法的计算方法计算。哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。
11、小数减法的计算方法小数相减,先把小数点对齐(把相同数位对齐),再按照整数减法的计算方法计算。哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。
12、在计算小数加法时,与整数加法一样,哪一位上的数相加满十就向前一位进1。注意:不要忘记满十进一,也不要忘记加上进上来的数。
13、把带有米、分米、厘米的数改写成以“米”为单位的小数时,米与小数的整数部分相对应,分米与小数点后的第一位数相对应,以此类推。如果米、分米、厘米中某一个单位上一个数也没有,在改写成以“米”为单位的小数时,就在那个单位所对应的数位上写0。
三年级知识点总结数学 第6篇
(一)口算除法
1、整千、整百、整十数除以一位数的口算方法。
(1)用表内除法计算:先用被除数0前面的数除以一位数,算出结果后,再看被除数的末尾有几个0,就在算出的结果后添几个0。
(2)用乘法来算除法:看一位数乘多少等于被除数,乘的数就是所求的商。
2、三位数除以一位数的估算方法。
(1)除数不变,把三位数看成几百几十或整百的数,再用口算除法的基本方法计算。
(2)想口诀估算:想一位数乘几最接近或等于被除数的最高位或前两位,那么几百或几十就是所要估算的商。
(二)笔算除法
1、牢固掌握两位数除以一位数、三位数除以一位数的笔算方法、步骤与格式,尤其是商中间、末尾有0的笔算算式的写法。
(除数是一位数的计算法则,除数是一位数,从被除数的高位除起,先除被除数的前一位,如果不够除,再除被除数的前两位,除到被除数的哪一位,商就写到被除数那一位的上面。除到被除数的哪一位不够商1,用0占位。每一次除得的余数必须比除数小。)
2、会判断商是几位数。
比较除数与被除数最高位的大小,如果被除数最高位上的数比除数小,那么商一定比被除数少一位;
如果被除数最高位上的数比除数大或相等,那么商和被除数的位数相等。
3、除法的验算方法:
(1)没有余数的除法:商除数=被除数;
(2)有余数的除法:商除数+余数=被除数;
4、关于0的一些规定:
(1)0不能作除数。
(2)相同的两个数相除商是1。(既然能相除这个数就不是0)
(3)0除以任何不是0的数都得0;
0乘任何数都得0。
5、乘除法的估算:4舍5入法。
数学进位加法的简单计算方法
不管多大的数相加其最基本的原则都是20以内的加法原则,20以内进位加法的速算口诀为:几加九进十减一、几加八进十减二、几加七进十减三、几加六进十减四。由于加法具有交换律,所以我们只需要记住这几句就可以了,在100以内的加法中,先观察两个各位数字,找出他们中间较大的数,按口诀进行计算可以很快的算出答案。
数学小数的加法和减法知识点
1、小数加法、减法:
(1)把数位(小数点)对齐。
(2)加减和整数的加减一样。
2、小数加法、减法的简便计算:
(1)可使用加法交换律,加法结合律进行简便计算。
(2)连续减去两个数等于减去这两个数的和。
(3)加法、减法混合在一起时,可以先加,也可以先减,看先干什么更简单。例如:
(1)5.6+2.7+4.4
(2)9.14+1.43+4.57=(5.6+4.4)+2.7=9.14+(1.43+4.57)
(3)51.27—8.66—1.34
(4)4.02—3.5+0.98=51.27—(8.66+1.34)=4.02+0.98—3.5
三年级知识点总结数学 第7篇
培养学生数学学习能力,重要路径是良好的学习习惯。
习惯是一个人在长时间里逐渐养成的、一时不易改变的行为或方式。好的学习习惯有助于巩固和发展学习能力,而且对将来工作和学习也有较大帮助。良好的学习习惯应该从小养成,在三年级教学中,就应开始重视培养学生的学习习惯。
根据学科特点和学生发展特点,小学生学习习惯大致包括下面几个方面:
1、常规学习习惯。①书写端正漂亮,卷面整洁规范;②计算认真仔细,画图符合要求;③学会观察事物,审题认真全面;④课前自学预习,课后回忆复习;⑤听课专心致志,活动积极参与;⑥作业独立按时,做完检查评价。
2、独立思考习惯。数学是思考性极强的一门学科。在数学教学中,独立思考表现为:无论上课或做作业时遇到问题,学生能积极开动脑筋、乐于思考、勤于思考、善于思考,而不依赖老师提示或同学求出的答案。
3、主动参与习惯。上课时,学生积极举手发言,发表自己见解,有话敢说,有问题敢提,有想法敢补充,让身心完全融入到课堂中去,这就是主动参与的集中表现。
4、合作性学习习惯。主要是指课堂教学与课外学习相结合,数学课堂积极参与合作操作、实践。课外合作收集生活中数学,身边数学的信息,思考探究处理信息,解决问题的习惯。
以上良好学习习惯的培养,有助于培养学生数学学习能力。例如,学生在学习三年级计算万以内的加减法时,错误率很高,这就要学生养成自觉验算的好习惯。发散到以后的学习中,都要有意识地让学生对学习过程进行自我监控,随时调整,不断完善。为此,在学习的过程中,教师还要注意经常提醒学生反身自问:为什么要这样做?我这样做对吗?有没有其他的解决方法呢?哪一种方法?以后逐步让学生形成自我监控的意识,提高元认知能力。教师还要有意识地做到经常训练学生的口算以及估算,提高正确率。有意识地让学生养成这些良好的数学学习习惯。所有这些学习习惯之间有着密切的关系,应该融会贯通地加以培养。
小学三年级是一个关键期也是一个转变期,学生数学学习能力的培养对我们老师来说不是一朝一夕就能完成的,是一个长期坚持的过程,任重而道远。数学相对来说是一门比较枯燥的学科,我们要以美的感受,以极大的热情引领学生进入数学之门,让学生产生兴趣,成为志趣,从内心里想要学习好掌握好数学这门课程,并自觉地提高自己的数学学习能力。
三年级知识点总结数学 第8篇
知识要点位置与方向
(一)认识东、南、西、北
1、自己动手制作一个“方向盘”,即在一张纸上,画上“十”字,按上北下南、左西右东标好
(西—+—东);
2、小学生三年级下册数学知识要点位置与方向:面朝南时,转动方向盘,将南对准前面,即:东—+—西,面朝东时,方向盘定为:北—+—南。
(二)认识东南、东北、西南、西北
(三)确定中心,找方位——解决这类题目的关键是找准以谁为中心。
三年级知识点总结数学 第9篇
1、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。
2、一个因数中间有0的乘法:
①0和任何数相乘都得0;
②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。
③一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。
3、①0和任何数相乘都得0;
②1和任何不是0的数相乘还得原来的数。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数
路程÷时间=速度
路程÷速度=时间
5、(关于“大约)应用题:
问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。(估算时要用≈)
例:387×5≈
把387看作390(个位是7,四舍五入,7大于5所以进1,看作390)再算390×5=1950。
所以:387×5≈1950
小学数学运算定律
1、加法交换律:交换加数的位置和不变。[a+b=b+a](如:23+34=57与34+23=57)
2、加法结合律:(a+b)+c=a+(b+c)先把前两个数相加,或者先把后两个数相加,和不变。
3、乘法交换律:a×b=b×a交换因数的位置积不变。
4、乘法结合律:(a×b)×c=a×(b×c)先把前两个数相乘,或者先把后两个数相乘,积不变。
5、乘法分配律:(a+b)×c=a×c+b×c两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。
数学三角形体积知识点
三角形是二维图形,二维图形没有体积公式。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。
体积,几何学专业术语,是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。
三年级知识点总结数学 第10篇
《四边形》
1、知识点:认识四边形的特征,掌握长方形、正方形的特征
①能正确辨认四边形。
②掌握长方形、正方形的特征。
注:应注重引导学生在长、正方形的对比中找出图形边和角的特征。
2、知识点:在方格纸上画出长方形和正方形
能在方格纸上画出长方形和正方形。
3、知识点:初步认识平行四边形
①能正确辨认平行四边形。
②能感悟到平行四边形易变形的特性。
③能在方格纸上正确画出平行四边形。
注:学生寻找平行四边形时,要注意与长方形、正方形的区别,逐步让学生在对比中感悟平行四边形的特征。
4、知识点:周长的含义
结合具体情境理解周长的含义。
5、知识点:计算长方形和正方形的周长
①能正确计算长方形、正方形等平面图形的周长。
②能运用周长的知识解决实际问题。
6、知识点:长度和周长的估计
在估量物体长度的过程中,逐步建立空间观念,养成估计的意识和习惯。
注:应注重引导学生说出估计相应长度的依据,逐步建立长度单位的表象。
《测量》
1、知识点:长度单位毫米、分米、千米及1毫米、1分米、1千米
①认识长度单位毫米、分米、千米,建立1毫米、1分米、1千米的长度观念。
②根据具体情境选择恰当的长度单位。
2、知识点:单位间的进率
①知道1厘米=10毫米,1分米=10厘米,1米=10分米,1千米(公里)=1000米。
②会进行简单的单位换算。
3、知识点:估计、测量物体的长度
能估计一些物体的长度,会选择不同的方式准确测量给定物体的长度。
4、知识点:质量单位吨及1吨
①认识质量单位“吨”,建立1吨的质量观念。
②能根据具体情境选择恰当的质量单位。
5、知识点:1吨=1000千克
知道1吨=1000千克,并会进行吨与千克的单位换算。
三年级知识点总结数学 第11篇
时分秒
1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是( 1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
8、公式。(每两个相邻的时间单位之间的进率是60)
1时=60分1分=60秒
半时=30分60分=1时
60秒=1分30分=半时
万以内的加法和减法
1、认识整千数(记忆:10个一千是一万)
2、读数和写数(读数时写汉字写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。
最大的三位数是位999,最小的三位数是100,最大的四位数是9999,最小的四位数是1000。最大的三位数比最小的四位数小1。
5、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。
6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
7、公式
和=加数+另一个加数
加数=和-另一个加数
减数=被减数-差
被减数=减数+差
差=被减数-减数
测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )
①进率是10:
1米=10分米, 1分米=10厘米,
1厘米=10毫米, 10分米=1米,
10厘米=1分米, 10毫米=1厘米,
②进率是100:
1米=100厘米, 1分米=100毫米,
100厘米=1米, 100毫米=1分米
③进率是1000:
1千米=1000米, 1公里==1000米,
1000米=1千米, 1000米=1公里
6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;
把千克换算成吨,是在数字的末尾去掉3个0。
7、相邻两个质量单位进率是1000。
1吨=1000千克1千克=1000克
1000千克= 1吨1000克=1千克
倍的"认识
1、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数
2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍
多位数乘一位数
1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)
2、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
3、因数末尾有几个0,就在积的末尾添上几个0。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程
每节车厢的人数×车厢的数量=全车的人数
5、(关于“大约)应用题:
①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)
②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)
③条件和问题中都有“大约”,求近似数,用估算。→(≈)
四边形
1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:
①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式。
正方形的周长=边长×4
正方形的边长=周长÷4,
长方形的周长=(长+宽)×2
长方形的长=周长÷2-宽,
长方形的宽=周长÷2-长
分数的初步认识
1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
3、①分子相同,分母小的分数反而大,分母大的分数反而小。
②分母相同,分子大的分数就大,分子小的分数就小。
4、①相同分母的分数相加、减:分母不变,只和分子相加、减。
② 1与分数相减:1可以看作是与减数分母相同的,同分子分母的分数。
三年级知识点总结数学 第12篇
第三单元测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)
2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
5、长度单位的关系式有:( 每两个相邻的长度单位之间的进率是10 )
① 进率是10:
1米=10分米, 1分米=10厘米,
1厘米=10毫米, 10分米=1米,
10厘米=1分米, 10毫米=1厘米,
② 进率是100:
1米=100厘米, 1分米=100毫米,
100厘米=1米, 100毫米=1分米
③ 进率是1000:
1千米=1000米, 1公里==1000米,
1000米=1千米, 1000米 =1公里
6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用( 克 )做单位;称一般物品的质量,常用(千克 )做单位;计量较重的或大宗物品的质量,通常用( 吨 )做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;
把千克换算成吨,是在数字的末尾去掉3个0。
7、相邻两个质量单位进率是1000。
1吨=1000千克 1千克=1000克
1000千克= 1吨 1000克=1千克
三年级知识点总结数学 第13篇
第一单元混合计算
6、0除以任何非0的数,还得0;
字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商;
5÷0得不到商.
第二单元观察物体
计算连加式题时,要按从左往右的顺序依次计算
连减
786-284-249=253
计算连减式题时,可以按从左往右的顺序依次计算,也可以先把两个减数加起来,再从被减数里减去两个减数的和。
786-(284+249)=253
加减混合
259+148-342=65
不带小括号的加减混合式题的运算顺序,:按从左往右的顺序依次计算。带小括号的加减混合式题的运算顺序:先算小括号里面的,再算小括号外面的。
里程表中的问题
求两地间的路程,要找准起点,用较远的路程减去较近的路程就得到两地间的路程
里程数=终点数-起点数
第四单元乘与除
2.月:
小月:4、6、9、11月
平月(二月):平年28天
闰年29天
3.日历:学会看日历,知道某年某月是星期几
4.钟表:24时记时法12时记时法
4.公式:
1时=
60分1分=60秒半时=30分
60分=1时
60秒=1分30分=半时
第八单元可能性
1.‘不可能和一定’,都表示确定的现象。‘可能’,表示不确定的现象。
2.请用“一定、可能、不可能”来说一说。
一定:太阳一定从东边升起;
月亮一定绕着地球转;
地球一定每天都在转动;
每天一定都有人出生;
人一定要喝水……
可能:三天后可能下雨;
花可能是香的;
明天可能有风;
下周可能会考试。……
不可能:太阳不可能从西边升起;
地球不可能绕着月亮转;
我不可能从出生到现在没吃过一点东西;
鲤鱼不可能在陆地上生活;
空中不可能盖楼房;
我不可能比姐姐大……
三年级知识点总结数学 第14篇
第一章分式
1、分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2、分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3、整数指数幂的加减乘除法
4、分式方程及其解法
第二章反比例函数
1、反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2、反比例函数在实际问题中的应用
第三章勾股定理
1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形
1、平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形
(1)矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定:有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章数据的分析
加权平均数、中位数、众数、极差、方差
三年级下册数学学习方法
回顾和把握平时的困难,注意检查错误,填补空白,合理解决问题。
在实践中,我们要抓住一个难题。我省高考数学考试的难度在0.65左右,如果命题的方向不偏颇,大多数学生都能减少当前问题的难度。对于优等生,要提高难度,灵活运用知识,深入分析问题,提高解决问题的能力。在平时,练习的次数应该适度控制,以前做过的问题应该被发现,特别是容易出错的知识点。我们应该再看一遍,把概念搞清楚,这样才能减少类似问题再犯错误的可能性。有两个重要的问题,一个是战略,另一个是技能。高考就像战争一样,在战略上要轻视敌人,在战术上要重视敌人。在策略上,学生应该建立信心。毕竟复习时间已经够长了,应该掌握知识,这样答案才能立于不败之地。就技巧而言,回答问题比回答问题容易。在试卷中,难度一般是分散的:选择题的难度在后面,填空的难度也是一样的。大问题一般可以在前面或两个做,在后面的大问题中,一两个小问题是比较容易解决的。当你回答一个问题时,你必须先解决这些问题。当你遇到麻烦时,不要花太多时间。只要放弃,做一些简单的事情,专注于突破。考试时间比较紧,要分配合理的答题时间。当然,这会因人而异。中产阶层应该把重心往前移动,在前面选择,填的时间越多,问题越大,有的由前面的问题比较简单,就能拿到积分来把握。优等生要在掌握问题速度的前提下,在适当的重心转移的前提下解决问题。
三年级下册数学学习技巧
学会看题
高中比初中有更多的相关材料。高考是全社会关注的问题。因此,在高中的实践尤其多,一些学生购买更多的材料。因此,如何利用主题来掌握我们学习的知识,扩大我们所学的知识是学习的关键。我认为我们应该看更多的话题,更多的思考,看看解决材料中问题的方法,思考方法中的原因,这样我们就可以从更多的方法中学习。
有很多方法来消化它们。因此,我们将不得不选择去做这个问题,用一半的努力达到两倍的结果。我建议每天练习一次,每周做一组完整的试题,看2到3组试题,从中找出这段时间数学学习的关键知识,这些是我们常用来解决问题的方法,以及可以用来优化解题的方法。
课后巩固
很多学生在课后的学习过程中不注重巩固,只是觉得课堂上的一些知识就足够了,其实这是错误的。高中数学知识丰富,不像初中数学那么简单,却有着丰富的内涵。如果它不能进一步挖掘,那么它只是掌握这些知识的表面。因此,我不知道如何理解,也不能使用这些知识时,我做我的练习。
做练习是必要的,但有些学生只是做练习,而不是巩固这些知识,把知识扩展到做练习,经常是在练习完成后完成练习。这和中学问题没有什么区别。事实上,我们也应该把在这个练习中使用的知识联系起来,这样我们才能理解正在使用的知识,并且能够掌握更多的知识。也可以发现知识点是关键,也可以发现如何链接相关知识的难题。
推荐访问: