2023年度九年级数学复习资料必备7篇

时间:2023-09-02 18:15:02 来源:网友投稿

九年级数学复习资料第1篇轴对称知识点如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。下面是小编为大家整理的九年级数学复习资料必备7篇,供大家参考。

九年级数学复习资料必备7篇

九年级数学复习资料 第1篇

轴对称知识点

如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

角平分线上的点到角两边距离相等。

线段垂直平分线上的任意一点到线段两个端点的距离相等。

与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

轴对称图形上对应线段相等、对应角相等。

画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

点(x,y)关于x轴对称的点的坐标为(x,-y)

点(x,y)关于y轴对称的点的坐标为(-x,y)

点(x,y)关于原点轴对称的点的坐标为(-x,-y)

等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。

等腰三角形的判定:等角对等边。

等边三角形的三个内角相等,等于60,

等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60的等腰三角形是等边三角形

有两个角是60的三角形是等边三角形。

直角三角形中,30角所对的直角边等于斜边的一半。

不等式

掌握不等式的基本性质,并会灵活运用:

(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac

比较大小:(a、b分别表示两个实数或整式)

一般地:

如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a

即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。

不等式的解集:能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。

不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左。

一元一次方程的解法

一般方法:

①去分母:去分母是指等式两边同时乘以分母的最小公倍数。

②去括号:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变。括号前是“-”,把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。(改成与原来相反的符号。

③移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

④合并同类项:通过合并同类项把一元一次方程式化为最简单的形式:ax=b(a≠0)。

⑤系数化为1。

图像法:一元一次方程ax+b=0(a≠0)的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图象与x轴交点的横坐标。

求根公式法:对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a。

整式

整式:整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。

乘法

(1)同底数幂相乘,底数不变,指数相加。

(2)幂的乘方,底数不变,指数相乘。

(3)积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。

整式的除法

(1)同底数幂相除,底数不变,指数相减。

(2)任何不等于零的数的零次幂为1。

分数的性质

分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。

分数可以表述成一个除法算式:如二分之一等于1除以2。其中,1分子等于被除数,-分数线等于除号,2分母等于除数,而分数值则等于商。

分数还可以表述为一个比,例如;二分之一等于1:2,其中1分子等于前项,—分数线等于比号,2分母等于后项,而分数值则等于比值。

当分子与分母同时乘或除以相同的数(0除外),分数值不会变化。因此,每一个分数都有无限个与其相等的分数。利用此性质,可进行约分与通分。

一个分数不是有限小数,就是无限循环小数,像π等这样的无限不循环小数,是不可能用分数代替的。

正负数加减法则顺口溜

正正相加,和为正。

负负相加,和为负。

正减负来,得为正。

负减正来,得为负。

其余没说,看大小。

谁大就往,谁边倒。

九年级数学复习资料 第2篇

考点1:确定事件和随机事件

考核要求:

(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;

(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。

考点2:事件发生的可能性大小,事件的概率

考核要求:

(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;

(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;

(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

注意:

(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;

(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

考点3:等可能试验中事件的概率问题及概率计算

考核要求

(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;

(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;

(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

注意:

(1)计算前要先确定是否为可能事件;

(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

考点4:数据整理与统计图表

考核要求:

(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

考点5:统计的含义

考核要求:

(1)知道统计的意义和一般研究过程;

(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。

考点6:平均数、加权平均数的概念和计算

考核要求:

(1)理解平均数、加权平均数的概念;

(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

考点7:中位数、众数、方差、标准差的概念和计算

考核要求:

(1)知道中位数、众数、方差、标准差的概念;

(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

注意:

(1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;

(2)求中位数之前必须先将数据排序。

考点8:频数、频率的意义,画频数分布直方图和频率分布直方图

考核要求:

(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;

(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。

考点9:中位数、众数、方差、标准差、频数、频率的应用

考核要求:

(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;

(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;

(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。

九年级数学复习资料 第3篇

1、概念:

把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

旋转三要素:旋转中心、旋转方面、旋转角

2、旋转的性质:

(1)旋转前后的两个图形是全等形;

(2)两个对应点到旋转中心的距离相等

(3)两个对应点与旋转中心的连线段的夹角等于旋转角

3、中心对称:

把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

这两个图形中的对应点叫做关于中心的对称点.

4、中心对称的性质:

(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

(2)关于中心对称的两个图形是全等图形.

5、中心对称图形:

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

九年级数学复习资料 第4篇

一、轴对称与轴对称图形:

轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段

轴对称的性质:

(1)关于某条直线对称的两个图形是全等形;

(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;

(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;

(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

线段垂直平分线:

(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;

②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

角的平分线:

(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.

(2)性质:①在角的平分线上的点到这个角的两边的距离相等.

②到一个角的两边距离相等的点,在这个角的平分线上.

注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.

等腰三角形的性质与判定:

性质:

(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;

(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;

(3)等边对等角:等腰三角形的两个底角相等。

说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;

③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。

判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

等边三角形的性质与判定:

性质:(1)等边三角形的三个角都相等,并且每个角都等于60°;

(2)等边三角形具有等腰三角形的所有性质,并且在每条边上都有“三线合一”。因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。

判定定理:有一个角是60°的等腰三角形是等边三角形。

说明:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等。

二、中心对称与中心对称图形:

中心对称:把一个图形绕着某一个点旋转180°,如果它能够和另外一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。

中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

中心对称的性质:(1)关于中心对称的两个图形是全等形;

(2)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分;

(3)成中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

九年级数学复习资料 第5篇

有理数、整式的加减、一元一次方程、图形的初步认识。

(1)有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。

【考察内容】复数以及混合运算(期中、期末必考计算)数轴、相反数、绝对值和倒数(选择、填空)。

(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。

【考察内容】

①整式的概念和简单的运算,主要是同类项的概念和化简求值

②完全平方公式,平方差公式的几何意义

③利用提公因式法和公式法分解因式。

(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。

【考察内容】

①方程及方程解的概念

②根据题意列一元一次方程

③解一元一次方程。题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。

(4)几何:角和线段,为下册学三角形打基础

相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。

(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。通常以填空,选择题形式出现。分值为3-4分,难易度为易。

【考察内容】

①平行线的性质(公理)

②平行线的判别方法

③构造平行线,利用平行线的性质解决问题。

(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。

【考察内容】

①考察平面直角坐标系内点的坐标特征

②函数自变量的取值范围和球函数的值

③考察结合图像对简单实际问题中的函数关系进行分析。

(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。

【考察内容】

①方程组的解法,解方程组

②根据题意列二元一次方程组解经济问题。

(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。

【考察内容:】

①一元一次不等式(组)的解法,不等式(组)解集的数轴表示,不等式(组)的整数解等,题型以选择,填空为主。

②列不等式(组)解决经济问题,调配问题等,主要以解答题为主。

③留意不等式(组)和函数图像的结合问题。

(5)数据库的收集整理与描述

分值一般在6-10分,题型近几年主要以解答题出现,偶尔以选择填空出现。难易度为中。

【考察内容】

①常见统计图和平均数,众数,中位数的计算分析。

②方差,极差的应用分析

③与现实生活有关的实际问题的考察热点。题目注重考查统计学的知识分析和数据处理。

三角形、全等三角形、轴对称、整式的乘除与因式分解、分式。

(1)三角形:是初中数学的基础,中考命题中的重点。中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。

【考查内容】

①三角形的性质和概念,三角形内角和定理,三边关系,以及三角形全等的性质与判定。

②三角形全等融入平行四边形的证明

③三角形运动,折叠,旋转,拼接形成的新数学问题

④等腰三角形的性质与判定,面积,周长等

⑤直角三角形的性质,勾股定理是重点

⑥三角形与圆的相关位置关系

⑦三角形中位线的性质应用

(2)全等三角形

(3)轴对称:图形的轴对称是中考题的新题型,热点题型。分值一般为3-4分,题型以填空,选择,作图为主,偶尔也会出现解答题。

【考察内容】

①轴对称和轴对称图形的性质判别。

②注意镜面对称与实际问题的解决。

(4)整式的乘除与因式分解:中考试题中分值约为4分,题型以选择,填空为主,难易度属于易。

【考察内容】

①整式的概念和简单的运算,主要是同类项的概念和化简求值

②完全平方公式,平方差公司的几何意义

③利用提公因式法和公式法分解因式。

(5)分式:中考试题中分值约为6-8分,主要以填空,简答计算题型出现,难易度属于中。

【考察内容】

①分式的概念,性质,意义

②分式的运算,化简求值。

③列分式方程解决实际问题。

二次根式、勾股定理、四边形、一次函数和数据的分析。

(1)二次根式

(2)勾股定理:解直角三角形,解直角三角形的知识是近几年各地中考命题的热点之一,考察题型为选择题,填空题,应用题为主,分值一般8-12分,难易度为难。

【考察内容】

①常见锐角的三角函数值的计算

②根据图形计算距离,高度,角度的应用题

③根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题。

(3)四边形:初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。

【考察内容】

①多边形的内角和,外角和等问题

②图形的镶嵌问题

③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。

(4)一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。

【考察内容】

①会画一次函数的图像,并掌握其性质。

②会根据已知条件,利用待定系数法确定一次函数的解析式。

③能用一次函数解决实际问题。

④考察一次函数与二元一次方程组,一元一次不等式的关系。

(5)数据的分析

二次函数、一元二次方程、旋转、圆和概率初步。

(1)二次函数:二次函数的图像和性质是中考数学命题的热点,难点。试题难度一般为难。常见选择,填空题分值为3-5分,综合题分值为10-12分。

【考察内容】

①能通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

②能用数形结合,归纳等熟悉思想,根据二次函数的表达式(图像)确定二次的开口方向,对称轴和顶点的坐标,并获得更多信息。

③综合运用方程,几何图形,函数等知识点解决问题。

(2)一元二次方程:中考分值约为3-5分,题型主要以选择,填空为主,极少出现简答,难易度为易。

【考察内容】

①方程及方程解的概念

②根据题意列一元一次方程

③解一元一次方程。

(3)旋转:图形的平移,旋转是中考题的新题型,热点题型,在试题比重,逐年上升。分值一般为5-8分,题型以填空,选择,作图为主,偶尔也会出现解答题。

【考察内容】

①中心对称和中心对称图形的性质

②旋转和平移的性质。

(4)圆:圆和圆的有关性质与圆的有关计算是近几年各地中考命题的重点内容。题型以填空题,选择题和解答题为主,也有以阅读理解,条件开放,结论开放探索题作为新的题型,分值一般是6-12分,难易度为中。

【考察内容】

①圆的有关性质的应用。垂径定理是重点。

②直线和圆,圆和圆的位置关系的判定及应用。

③弧长,扇形面积,圆柱,圆锥的侧面积和全面积的计算

④圆与相似三角形,三角函数的综合运用以及有关的开放题,探索题。

(5)概率初步:分值一般3-6分,题型以选择,填空常见,更多以解答题目为主,难易度为中。

【考察内容】

①简答事件的概率求解,图表法和数形图法

②利用概率解决实际,公平性问题等

③注意概率知识与方程相结合的综合性试题,选材贴近生活,越来越新。

反比例函数、相似、锐角三角函数和投影与视图。

(1)反比例函数:反比例函数的图像和性质是中考数学命题的重要内容,试题新颖,题型灵活多样,所占分值约为3-8分,难易度属于难。

【考察内容】

①会画反比例函数的图像,掌握基本性质。

②能根据条件确定反比例函数的表达式。

③能用反比例函数解决实际问题。

(2)相似:图形的形似是平面几何中极为重要的内容,是中考数学中的重点考察内容。一般分值约为6-12分,题型以选择,填空,解答综合题目为主,难易度属于难。

【考察内容】

①相似三角形的性质和判别方法,是重点。

②相似多边形的认识,黄金分割的应用。

③相似形与三角形,平行四边形的综合性题目是难点。

(3)锐角三角函数

(4)投影与视图:分值一般为3-6分,试题以填空,选择,解答的形式出现。

【考察内容】

①常见几何体的三视图

②常见几何体的展开和折叠,展开和折叠是考试的热点,值得注意。

③利用相似结合平行投影和中心投影解决实际问题。

(不同地区分值不同,可供参考)

选择题:3分一个,共14个,总分42分。

填空题:3分一个,共5个,总分15分。

解答题:共7题,总分63分。

(一)线段、角的计算与证明问题

中考中的简答题一般是分为两到三部分的。第一部分基本上都是简单题和中档题,目的在于考查基础。第二部分第二部分往往就是开始拉分的中难题了。

(二)列方程(组)解决应用问题

在中考中,方程是初中数学当中最重要的部分,所以也是中考必考内容。从近年来中考来看,结合时事热点考的比较多,所以还需要考生有一些实际生活经验。

(三)阅读理解问题

阅读理解问题是中考中的一个亮点。阅读理解往往是先给一个材料或介绍一个超纲的知识或给出一个针对某一种题目的解法,然后再给出条件出题。

(四)多种函数交叉综合问题

初中接触的函数主要有一次函数、二次函数和反比例函数。这类题目本身并不会太难,很少作为压轴题目出现,一般都是作为一道中档次题目出现来考查学生对函数的掌握。

(五)动态几何

从历年的中考来看,动态几何往往作为压轴的题目出现,得分率也是最低的。动态几何一般分为两类,一类是代数综合方面,在坐标系中,动直线一般是用多种函数交叉求解。另一类是几何综合题,在梯形、矩形和三角形中设立动点,考查学生的综合分析能力。

(六)图形位置关系

中学数学当中,图形位置关系主要包括点、线、三角形、矩形和正方形及它们之间的关系。在中考中会包括在函数、坐标系及几何题中,其中最重要的是三角形的各种问题。


九年级数学复习资料 第6篇

知识点1:一元二次方程的基本概念

1、一元二次方程3x2+5x-2=0的常数项是-2。

2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。

3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。

4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。

知识点2:直角坐标系与点的位置

1、直角坐标系中,点A(3,0)在y轴上。

2、直角坐标系中,x轴上的任意点的横坐标为0。

3、直角坐标系中,点A(1,1)在第一象限。

4、直角坐标系中,点A(-2,3)在第四象限。

5、直角坐标系中,点A(-2,1)在第二象限。

知识点3:已知自变量的值求函数值

1、当x=2时,函数y=的值为1。

2、当x=3时,函数y=的值为1。

3、当x=-1时,函数y=的值为1。

知识点4:基本函数的概念及性质

1、函数y=-8x是一次函数。

2、函数y=4x+1是正比例函数。

3、函数是反比例函数。

4、抛物线y=-3(x-2)2-5的开口向下。

5、抛物线y=4(x-3)2-10的对称轴是x=3。

6、抛物线的顶点坐标是(1,2)。

7、反比例函数的图象在第一、三象限。

知识点5:数据的平均数中位数与众数

1、数据13,10,12,8,7的平均数是10。

2、数据3,4,2,4,4的众数是4。

3、数据1,2,3,4,5的中位数是3。

知识点6:特殊三角函数值

°=。

°+cos260°=1。

°+tan45°=2。

°=1。

°+sin30°=1。

知识点7:圆的基本性质

1、半圆或直径所对的圆周角是直角。

2、任意一个三角形一定有一个外接圆。

3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

4、在同圆或等圆中,相等的圆心角所对的弧相等。

5、同弧所对的圆周角等于圆心角的一半。

6、同圆或等圆的半径相等。

7、过三个点一定可以作一个圆。

8、长度相等的两条弧是等弧。

9、在同圆或等圆中,相等的圆心角所对的弧相等。

10、经过圆心平分弦的直径垂直于弦。

知识点8:直线与圆的位置关系

1、直线与圆有公共点时,叫做直线与圆相切。

2、三角形的外接圆的圆心叫做三角形的外心。

3、弦切角等于所夹的弧所对的圆心角。

4、三角形的内切圆的圆心叫做三角形的内心。

5、垂直于半径的直线必为圆的切线。

6、过半径的外端点并且垂直于半径的直线是圆的切线。

7、垂直于半径的直线是圆的切线。

8、圆的切线垂直于过切点的半径。

九年级数学复习资料 第7篇

因式分解的方法

十字相乘法

(1)把二次项系数和常数项分别分解因数;

(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;

(3)确定合适的十字图并写出因式分解的结果;

(4)检验。

提公因式法

(1)找出公因式;

(2)提公因式并确定另一个因式;

①找公因式可按照确定公因式的方法先确定系数再确定字母;

②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;

③提完公因式后,另一因式的项数与原多项式的项数相同。

待定系数法

(1)确定所求问题含待定系数的一般解析式;

(2)根据恒等条件,列出一组含待定系数的方程;

(3)解方程或消去待定系数,从而使问题得到解决。

推荐访问:复习资料 九年级 必备 九年级数学复习资料必备7篇 九年级数学复习资料(必备7篇) 九年级数学必考知识点归纳