数学化简教学设计第1篇教学目标:1、通过学生的自主探讨,掌握比的化简方法,并会化简比。2、通过探讨,使学生理解算法的多样化和最优化。3、初步渗透事物是普遍联系的辩证唯物主义观点。教学重点:推导化简比的下面是小编为大家整理的数学化简教学设计集锦,供大家参考。
数学化简教学设计 第1篇
教学目标:
1、通过学生的自主探讨,掌握比的化简方法,并会化简比。
2、通过探讨,使学生理解算法的多样化和最优化。
3、初步渗透事物是普遍联系的辩证唯物主义观点。
教学重点:
推导化简比的方法,正确地化简比。
教学难点:
正确地化简比。
教师准备:
多媒体课件
课时安排:
1课时
教学过程:
一、复习准备。
1、我会填。
15/( )=3 ( )/5=2 120/60= 180/( )=3
0.125x1000= ( )x100=75 0.3x( )=3 0.25x4=
1/6x( )=1 2/9x9= 3/5/1/2= 5/3/3=
2、复习比的基本性质,引入课题。
运用商不变性质可以把除法进行简算,根据分数的基本性质可以对分数进行约分。应用比的基本性质,我们也可以把一个比化成最简单的整数比。这就是我们本节课要学习的内容——比的化简(板书)。
什么是最简单的整数比?(前项和后项都是整数,并且互质。)
二、创设情境,探究新知。
1、老师这儿有一张珍藏的照片,想和大家一起来分享(出示主题图),认识这位叔叔吗?(杨利伟)2003年10月15日,我国自主研发的“神舟五号”飞船,把杨利伟送入了浩瀚的太空,全国人民都感到非常骄傲与自豪。这张照片是什么?(联合国旗帜)在“神舟五号”上搭载了两面联合国旗帜,一面长15厘米,宽10厘米,一面长180厘米,宽120厘米。这两面旗帜的长和宽的比是多少?是最简整数比吗?怎样运用比的基本性质把它们化成最简比哪?请同学们讨论解决。
(1)、学生汇报:15:10=(15/5):(10/5)=3:2
180:120=(180/60):(120/60)=3:2
提问:5是15和10的什么数?为什么要除以5?
60是180和120的什么数?为什么要除以60?
(2)小结:整数比化简时用前项和后项同时除以它们的最大公因数就可以了。
(3)练习:选择正确答案
6:8=( ) a,3:4 b,2:3 c,12:18
10:20=( ) a,2:5 b,2:3 c,1:2
2、整数比的化简我们学会了,老师这儿还有一种比——分数比,(出示课件1/6:2/9)它怎么来化简呢?小组讨论然后汇报。
(1)学生汇报:1/6:2/9=(1/6x18):(2/9x18)=3:4
提问:18是这两个分数的分母的什么数?为什么要乘18?
(2)小结:化简分数比时,分别给前项和后项同时乘它们的最小公分母,化成整数比,再化简。
(3)练习:化简下列比
3/4:1/5 5/2:6/7
3、分数比的化简我们也学会了,那小数比怎么化简呢?小组讨论,然后汇报。
(1)学生汇报:0。75:2=(0。75x100):(2x100)=75:200=3:8
提问:0.75是几位小数?为什么要乘100?75:100是最简整数比吗?
(2)小结:化简小数比时,要先把小数扩大变成整数,再化简。扩大时要注意同时扩大相同的倍数。
(3)练习:我是化简小能手
2.1:0.2 0.45:0.3
4、总结:整数比——比的前项和后项同时除以它们的最大公因数,就能化成最简整数比。
分数比——比的前项和后项同时乘它们的最小公分母,化成整数比再化简。
小数比——先把小数扩大变成整数,再化简。
三、巩固练习。
1、独立完成做一做,集体订正。订正时注意0。125:5/8有两种方法:
(1)0.125:5/8=1/8:5/8=(1/8x8):(5/8x8)=1:5
(2)0.125:5/8=0.125:0.625=125:625=(125/125):(625/125)=1:5
2、出示课件:把下面的比化成最简单的整数比
32:24 3/5:9/10 3.8:4.2 3:3/4
四、课堂小结。
通过这节课的学习,你有什么收获?
五、布置作业。
37页练习十一4、6题。
数学化简教学设计 第2篇
教学内容:
人教版小学数学第十一册第四章《化简比》。
教学目标:
1、在实际情境中体会化简比的必要性,进一步体会比的含义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、感受数学知识的内在联系。
教学重点:
比的化简的方法。
教学难点:
运用比的化简,解决一些简单的实际问题。
教学方法:
讨论法,练习法
教学准备:
课件
教学过程:
一、课前三分钟。
1、比的基本性质是什么?
(比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。)
2、什么是最简整数比?请举例说明。
(强调:比的前项和后项是互质数或比的前项和后项只有公因数1。)
二、导课
刚才我们复习了比的.基本性质和什么是最简整数比,今天我们用所学的知识来学习新的知识《化简比》。请同学们拿出前置小研究。在小组内进行交流。
三、出示前置小研究。学生在小组内交流前置小研究。
(一)、我的研究
1、把下列各比化成最简整数比。
(1)15:10180:120(2):
(3)0.75:20.4:0.32(4):0.70.5:
2、请举出两个化成最简整数比的例子。
3、总结化成最简整数比的方法。
(二)、我的收获:
(三)、我的提醒:
学生合作学习,教师巡视,针对出现的问题进行点拨。
四、学生汇报:
(一)学生汇报小组内交流讨论的结果。
我们是超越三组,我是1号,第1题由我来汇报。
(1)15:10=(15÷5):(10÷5)=3:2
180:120=(180÷60):(120÷60)=3:2
我汇报完毕,谁还有不同的方法?
我有不同的方法:180:120=(180÷30):(120÷30)=6:4=3:2
我汇报完毕,请同学们补充、质疑或评价!
小结:以上两种方法都对,但第一种比的前项和后项都除以它们的最大公因数比较简便。
我是超越三组的2号,第2题由我来汇报。
(2):=(×18):(×18)=3:4
提问:谁还有不同的方法?
我有不同的方法::=÷=×==3:4
谁能总结整数比的化简方法?(其它学生补充)
我是超越三组的3号,第3题由我来汇报。
(3)0.75:2=(0.75×100):(2×100)=75:200=3:8
0.4:0.32=(0.4×100):(0.32×100)=40:32=5:4
提问:谁还有不同的方法?
谁能总结整数比的化简方法?(其它学生补充)
我们小组汇报完毕请同学们补充、质疑或评价!
(二)其它小组进行评价和补充。
(1)化简比的结果应该是怎样的?
(2)你认为化简比的结果与求比值的结果有什么区别?
(比值是一个数,可以是整数、小数或分数,比必须有前项和后项,是比的形式)。
(三)总结化简比的方法。
整数比:根据比的基本性质,比的前项和后项同时除以它们的最大公因数化成最简整数比。
分数比:根据比的基本性质,比的前项和后项同时乘分母的最小公倍数,先转化成整数比,再根据整数比的化简方法进行化简。
小数比:根据比的基本性质,比的前项和后项依照小数的位数同时乘10、100或1000先转化成整数比,再根据整数比的化简方法进行化简。
四、拓展知识:
介绍黄金比。
五、评测练习。
1、我来当小判官。
(1)16︰4的最简比是4。()
(2)5︰2.5的比值是2。()
(3)6︰0.3的最简比是20︰1。()
(4)比的前项和后项都乘或都除以相同的数,比值不变。()
2、把下列各比化成最简整数比。
15:210.12:0.4:1:
(1)请四位同学上去板演,其他做在练习本上。
(2)反馈,集体订正:请这四位同学说说,你是怎么化简的?
3、我来解决。
一项工程,甲单独做20天完成,乙单独做30天完成。
(1)写出甲、乙两队完成这项工程所用的时间比,并化简。
(2)写出甲、乙两队工作效率比,并化简。
六、布置作业:练习十一4、5题。
七、板书设计:
化简比
15:10=(15÷5):(10÷5)=3:2
180:120=(180÷60):(120÷60)=3:2
0.75:2=(0.75×100):(2×100)=75:200=3:8
0.4:0.32=(0.4×100):(0.32×100)=40:32=5:4
数学化简教学设计 第3篇
教学内容:
人教版小学六年级上册数学教材第50页51内容及练习十一的第4—7题。
教学目标:
1、理解比的基本性质。
2、通过学生的自主学习,掌握化简比的方法并会化简比。
3、培养学生的抽象概括能力,渗透转化的数学思想。
教学重点:
理解最简单的整数比。
教学难点:
利用比的基本性质正确化简比。
教学方法:
以学生自主探究为主,教师引导,
教学准备:
前置小研究,教学课件
教学过程:
一、(课前三分钟)
1、什么叫比的基本性质?
2、什么是最简单的整数比,举例说明?
(设计意图:加强基础训练,巩固认识最简的整数比的练习,为本节课化简比做铺垫。)
汇报答案时强调最简单的整数比应具备的两个条件。
学生总结,教师板书。
1、比的前项后项必须都是整数。
2、比的前项后项必须是互质数。
以后我们写出的比应该都化简成最简整数比。
二、导入:我们已经学习了比的基本性质,今天我们一起探究利用比的基本性质把一个比化成最简单的整数比。板书:化简比。
三、新授:
1、拿出前置小研究分小组交流讨论
看课本第50—51页例1内容,尝试练习:
(1)15:10180;120
我发现:——————————————————————————。
我发现:——————————————————————————。
(3)2.1:3.60.75:2
我发现:——————————————————————————。
我发现:——————————————————————————。
(4)0.6:0.4:
我发现:——————————————————————————。
2、汇报展示(指名小组汇报)
(1)15:10=15180:120
生1:15:10=(15÷5):(10÷5)=3:2
180:120=(180÷60):(120÷60)=3:2
生1:我发现:化简整数比时,比的前项和后项同时除以它们的最大公因数。
师点拨观察:第一组比,前项和后项为什么同时都除以5?
生2:我发现:化简分数比时,比的前项和后项同时乘分母的最小公倍数。
生3:化简小数比:2.1:3.6=(2.1×100):(3.6×100)
=21:36=(21÷3):36÷3)=7:12
0.75:2=(0.75×100):(2×100)=75:200
=(75÷25):(200÷25)=3:8
生3:我发现:化简小数比时,先把小数比化成整数比,然后再化成最简比。
生4:我发现:化简一个小数和一个分数比时,先把小数比化成分数比,然后再化成最简比;
当分数能化简成有限小数时,可以把分数化成小数,再按小数比的方法进行化简。
设计意图:这一环节的教学充分发挥学生的主体作用,把课堂还给孩子,同时也检查孩子的预习效果,最后小结方法,渗透最优化的数学思想)
3.老师带领学生对小组汇报的内容进行梳理:
1.化简整数比时,比的前项和后项同时除以它们的最大公因数。
2:化简分数比时,比的前项和后项同时乘分母的最小公倍数。
3:化简小数比时,先把小数比化成整数比,然后再化成最简比。
4:化简一个小数和一个分数比时,先把小数比化成分数比,然后再化成最简比;
当分数能化简成有限小数时,可以把分数化成小数,再按小数比的方法进行化简。
四、巩固练习:
1、等比接龙:
2:3=20:30=4:6=200:300=()=()=()=()
100:50=40:20=()=()=()=()
2、一项工程,甲单独做12天完成,乙单独做10天完成,甲乙所用时间比是(),工效比是()。
3、甲是乙的1.2倍,甲与乙的比是()。
4、甲是乙的1又1/4倍,甲与乙的比是()。
五:全课总结:通过本节课的学习,你有什么收获?
评测练习
1、判断题
(1)、比的前项乘5,后项除以,比值不变。()
(2)、比的前项和后项同时乘一个相同的数,比值不变。()
(3)、比的基本性质与商不变的规律是一致的。()
(4)、10克盐溶解在100克水中,这时盐和盐水的质量比是1:10.()
2、8:10==40÷()=()(填小数)
3、学校电脑小组有男生25人,女生20人。男生人数是女生的()倍,女生人数与男生人数的最简单的整数比是():(),女生人数占总人数的()
4、化简下列各比。
24:36 0.75:1
数学化简教学设计 第4篇
教学目标
知识目标:在实际情境中,让学生体会化简比的必要性,进一步体会比的意义。
能力目标:会运用商不变的规律或分数的基本性质化简比,并能解决一些简单的实际问题。
情感目标:在化简比的同时感受数学的应用价值,体会数学知识的内在联系。
教学重难点重点:会运用商不变的性质或分数的基本性质化简比。
难点:运用比的化简解决生活中的一些实际问题。
教学过程
一、复习铺垫,揭示课题。
1.师:上节课我们学习了生活中的比,谁来说说什么叫比?你能举个例子吗?
2.比与除法、分数有什么关系?
3.这节课我们继续学习关于比的知识(板书课题——比的化简)
4.看了这个课题,你想知道些什么?
二、创设情境,探究新知。
1.体会化简比的必要性。
师:上课前很多同学一直问老师这两个杯子里面装的什么?其实这是老师课前调制好的蜂蜜水。你能判断出哪杯蜂蜜水更甜吗?
师:是的,又不能喝,光凭眼睛看不好判断,那你们需要老师给你提供些什么信息?
根据学生回答,课件出示相应的数据信息:
蜂蜜水
号杯:3小杯12小杯
号杯:4小杯16小杯
师:根据这些信息,现在你有办法解决“哪杯蜂蜜水更甜”这个问题吗?
预设:生1:看看平均一小杯蜂蜜用了几小杯水,再进行比较。
生2:看看平均一小杯水用了多少小杯的蜂蜜,再进行比较。
教师适时引导学生找出蜂蜜与水之间的比,并板书:
1号杯:3:12
2号杯:4:16
师:联系前面学过的分数与比的关系,想一想,3:12和4:16这两个比能不能像分数化成最简分数一样,也能化成最简比呢?把你的想法和同桌说一说,并试一试。
师:谁来汇报一下你的方法,并说说这样做的依据。根据学生回答板书:
1号杯:3:12=3/12=1/4=1:4
2号杯:4:16=4/16=1/4=1:4
师:现在我们发现,两杯水中蜂蜜和水的比实际上都是1:4,说明这两杯水是?(一样甜)
2.理解化简比。
师:刚才同学们利用分数与比的关系把3:12化成了1:4,把4:16也化成了1:4,这个过程就是比的化简(指着板书),谁能看着板书再把化简比的过程说一说?
师:从刚才的化简过程中,我们知道3:12=4:16,两杯水是一样甜的。笑笑也写了两组相等的比(课件出示)仔细观察,看看有什么发现,请你也试着写一组相等的比,并和同桌交流。
(1)学生独立思考,试着写一写,并同桌交流自己的发现。
(2)结合学生汇报,课件演示每组相等的比中前项、后项是如何变化的,并引导学生发现比的化简与商不变规律以及分数的基本性质之间的联系。
3.归纳比的基本性质
师:你能根据商不变规律和分数的基本性质概括出比的基本性质吗?
比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。(强调“0除外”)
4.揭示“最简整数比”。
师:分数约分要注意什么?比的化简又要注意什么?
分数约分要约到最简分数,化简比也要化到前项和后项只有公因数1为止,这样的比就叫最简整数比。
5.化简比的方法
师:分数可以约分,比也可以化简,你能化简下面的比吗?(课件出示)
化简下面的比:
24:42120:60
1)独立尝试。(指明两人板演)
交流:说说你的思路。(方法、根据)
2)小组活动:(课件出示)
化简下面的比:
0.7:0.82/5:1/4
思考:这两组比与前面的最大区别是什么?
小组讨论:如何把这两组比化简?并试一试。
全班展示、交流:让我们一起来分享同学的智慧。(充分展示学生的不同方法。)
3)归纳:怎样化简比?
小组讨论、全班交流。
4)师小结:看来,化简比的方法不唯一,不过都有一个共同目标:最后都要化简成最简整数比。
三、巩固应用,解决问题。
1.化简比:(带的为选做)
(要求:学习有些吃力的学生可只化简前三组比,程度一般的学生至少化简四组比,程度好的学生要求全做。)
21:240.3:1.54/5:5/7
1:4/50.12:60.4:1/4
2.教材第73页“练一练”第1、2题。学生独立完成,集体交流、订正。
3.教材第73页“练一练”第4题。
(1)学生独立完成(1)、(2)两题,集体订正。
(2)小组讨论完成第(3)题,集体交流,明确:判断谁投球命中率的高低就是看比值的大小。
四、全课总结
师:回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?
数学化简教学设计 第5篇
教材分析
本节课的教学内容是比的基本性质和化简比。教材例3先用表格呈现了4瓶液体的质量和体积,要求学生求出各瓶液体质量和体积的比值,然后把比值相等的3个比写成等式,通过提示“联系分数的基本性质想一想,比会有什么性质”,让学生联想到分数基本性质类比出比的基本性质。由于有分数的基本性质和除法商不变规律的经验,学生理解.得出比的性质不会太难。在此基础上,教材进一步引导学生比较“这三个相等的比,哪一个更简单一些”。
学情分析
在以前的学习中,学生学习了分数基本性质.商不变的性质以及比与除法.分数之间的关系,但是对本节课具有直接的真正迁移作用的仅有分数的基本性质以及比与除法。分数之间的关系。从语言学的角度说,分数.比的基本性质在句式上是一致的,容易被学生理解;
从过程来说,分数的化简和比的化简具有较高的相似度,学生容易掌握。
教学目标
1.学生理解和掌握比的基本性质,并会运用这个性质把比化简成最简单的整数比。
2.经历在实际情境中化简比,体会化简比的必要性。
3.学生通过观察.类比来建构比的基本性质和探索化简比的方法;
在化简的过程中,加深对比与除法.分数之间关系的理解。
教学重点和难点
重点:学生掌握比的基本性质,并正确地化简比。
难点:灵活应用比的基本性质化简比。
教学过程
一、情景激趣,提出问题
1、出示例3的表格
2、分析表格中的数学信息和数学问题,并解决这些数学问题。
3、分析、讨论表格中的数据,并尝试把表格中的比分类。
小结:我们可以把比值相等的比分为一类。
二、小组合作,探究新知
1、讨论一:如果第五瓶溶液的质量和体积的比值也是4/5,你觉得它的质量和体积的比会是几比几呢?为什么?
2、讨论二:可以写出多少个比值是4/5的比呢?
3、讨论三:小组用比的基本性质解释一下,第一瓶、第二瓶、第四瓶以及第五瓶液体为什么分为一类/这些比中哪一个最简洁?
三、尝试运用,解决问题
先尝试独立完成“练一练”,再在小组内交流方法。
四、全课总结
师:通过这节课的学习,你有什么收获?
推荐访问:教学设计 集锦 数学 数学化简教学设计集锦 数学化简教学设计(集锦5篇) 数学化简的步骤