2023年度分数小学教学设计必备23篇(精选文档)

时间:2023-09-06 09:50:03 来源:网友投稿

分数小学教学设计第1篇教学内容:教材第45页、46页内容教学目标:1.了解分数的产生,进一步理解分数的意义。2.理解单位“1”的含义,认识分数单位,能说明一个分数中有几个分数单位。3.在理解分数含义的下面是小编为大家整理的分数小学教学设计必备23篇,供大家参考。

分数小学教学设计必备23篇

分数小学教学设计 第1篇

教学内容:

教材第45页、46页内容

教学目标:

1.了解分数的产生,进一步理解分数的意义。

2.理解单位“1”的含义,认识分数单位,能说明一个分数中有几个分数单位。

3.在理解分数含义的过程中,渗透比较、数形结合等思想方法。

4.培养学生的抽象概括能力。

教学重点:理解分数的意义。

教学难点:理解单位“1”,认识分数单位。

教学准备:

学具:一张长方形或正方形的纸,一些物体的图片

教具:PPT课件

教学过程:

一.复习引入

师:今天的数学课呀,我们要从一张纸开始。请同学们拿出手中的一张纸,连续对折两次,然后展开。

(生操作)

师:你把这张纸分成了几份?大小相等吗?我们把这种分法叫做——平均分(板书:平均分)。(指其中的一份)其中的一份可以用哪个分数来表示?(板书:1/4)(指另一张分成不平均4份的纸中的一份)这种分法中的一份也可能用1/4来表示吗?为什么?没错,只有平均分的情况才可以用(指1/4)这样的分数来表示。这个分数它表示什么意思?(指两名学生来说,引导学生具体完整地回答)

师:其实,早在三年级时,我们就已经认识分数了,你还记得它各部分的名字吗?(指4)这是分母(板书:分母)(指1)这是分子(板书:分子)(指分数线)这是分数线,它表示平均分(强调平均分)。那今天我们就继续来了解分数(板书:分数的意义)。

二、探究理解分数的意义

1.描述以“一个物体”为单位“1”的分数表示法

师:除了这样的一张纸,还有什么物体也可以表示出它的1/4?(比如一块蛋糕、一支铅笔……引导学生举例并描述1/4)

小结:也就是说任何——一个物体,都可以平均分成几份,然后用分数来表示。(同时板书:一个物体)

2.探究以“一些物体”为单位“1”的分数表示法

(1)操作探究

师:如果给你一些物体,你还能用刚才的方法表示出1/4吗?请同学们从学具中选取一张物体的图片,试着画一画,来表示出这些物体的1/4.

学生动手操作。

表示完的同学先和同桌说一说你是怎么表示1/4的。

(2)展示交流

师:谁来说一说你是怎样表示1/4的?(选3名同学展示交流)

(引导学生具体表述,示例:我把这些苹果平均分成4份,其中的一份就是这些苹果的1/4)

3.归纳,认识单位“1”

师:很好!看来,可以被平均分并用分数表示的可以是“一个物体”,也可以是“一些物体”(板书:一些物体)。在这里,我们把它们都叫做一个整体(板书:一个整体),把一个整体平均分成4份,其中的一份就是这个整体的1/4.这个整体可以用自然数1来表示,我们通常把它叫做单位“1”(板书:单位“1”)

师:现在来想一想,我们还可以把哪些东西看成单位“1”,和你的同桌说一说。

学生思考后交流。指名回答。

师:(课件出示)1米可以看成单位“1”吗?对,比如1分米就是1米的1/10.像这样的一个计量单位(板书:计量单位)比如1千克、1小时……也都可以看成一个整体,也就是单位“1”

4.再次认识几分之几

师:(课件出示)老师也有一幅表示1/4的作品,露出来的部分是一个整体的1/4.。你能在练习纸上把藏起来的图形画出来吗?

(生动手画)

师:谁来说一说你是怎样画的?为什么这样画?这个整体是什么样的?这里的1/4是把什么看成单位“1“了?

师:那你画出来的部分,应该用哪个分数来表示呢?(板书3/4)为什么?

师:说得太清楚了!下面就请同学们任意写一个分数,再和同桌说说你写的这个分数所表示的意思。

选2名同学汇报,板书相应分数。

三、认识分数单位

师:同学们介绍得都很好。下面请同学们把书翻到第46页,完成做一做。

汇报:这里把什么看成单位1?

师:(指课件)像这样,把单位1平均分成若干份,表示其中一份的数,我们把它叫做分数单位。

学生分别汇报课件上一些分数的分数单位。

师:同样把这一堆糖看成单位“1”,平均分的份数不同,所表示出来的分数单位也就不同。

四、分数的产生

师:今天,我们学习了分数的意义。你们知道分数是怎样产生的吗?(看课件演示)

师:分数是我们在进行测量、分物时,或者计算时,得不到一个整数结果的情况下产生,它来源于生活和数学的需要,也正是这样的需要,我们以后还会继续认识更多的数。

板书设计:

分数小学教学设计 第2篇

教学目标

1、使学生知道分数的产生,理解分数的意义,特别是理解单位“1”、分子、分母的意义,学会用分数描述生活中的事情。

2、培养学生动手操能力和概括能力。

3、让学生在轻松和谐的课堂教学氛围中主动参与,在操作体验中,激发学习兴趣,树立学好数学的信心。

教学重点:

分数的意义,正确认识单位“1”。

教学难点:

单位“1”概念的建立。

教学准备:

教具:课件、图片,电子白板。

学法指导:

引导学生自学、带着问题学,培养良好的学习习惯。

教学过程

活动一:复习导入

1、提问:

(1)把2个苹果平均分给2个小朋友,每人分的几个??

(2)把1个苹果平均分给2个小朋友,每人分的几个?(每人分得这个苹果的2/1)?

活动二:

1、关于分数,你知道了分数哪些知识?分数是怎样产生的呢?能说出几个简单的分数吗?

2、关于分数,你还想知道什么?

设计意图:注意新旧知识的衔接,为建立单位“1”打下基础。

活动三:

探究单位“1”是一个物体或一个计量单位的分数

初步得出:把一个物体或一个计量单位平均分成若干份,表示这样的一份或几份,我们可以用分数来表示。

活动四:探究单位“1”是许多物体的一个整体。

引导学生说出:原来是把一个物体或一个计量单位看作一个整体,现在是把许多物体看作一个整体。

练习:举例,然后说出各个例子中的单位“1”。

设计意图:把单位“1”从一个物体过渡到一个整体,初步建立单位“1”概念。

小结:单位“1”可以指一个物体、一个计量单位,还可以指由许多物体组成的一个整体。能说说我们生活中哪些物体可以看作单位“1”?

设计意图:进一步认识单位“1”,使学生理解单位“1”,不仅可以是一个物体,许多物体也可以看成单位“1”。为充分理解分数的意义基础。

练习

活动五:归纳分数的意义

⑴我们学到这里大家能说说什么叫做分数?(同学试着说说)

⑵读读书上是怎么说的?

⑶课件出示分数的意义:让学生再读一遍。

⒎认识分数的各部分名称

同桌同学说分数,说名称。

活动六:巩固应用??拓展练习??思考题

课件出示

(五)总结全课

通过这节课的学习,同学们知道了什么?

板书设计:

分数的产生和意义

分数的产生?生活的需要

分数的意义

1/4?3/4

把一个整体平均分成若干份,这样的一份或几份的数都可以用分数表示。

分数小学教学设计 第3篇

单元总目标

1、经历分数产生的过程,理解分数的意义,明确分数与除法的关系。

2、认识真分数与假分数,知道带分数是一部分的假分数的另一种书写形式,能把假分数化成带分数或整数。

3、经历分数的基本性质的形成过程,理解和掌握分数的基本性质,会比较分数的大小。

4、现实情境与数学知识相结合,理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数和最小公倍数,能比较熟练地进行约分和通分。

5、会进行分数与小数的互化。

6、培养灵活的思维方式和解决实际问题的能力,培养收集、处理问题的能力。

7、加强数学知识与现实生活的联系,培养学习数学的兴趣,获得学习的成功体验,增进学好数学的信心。

本课教学目标

知识与技能

1、在具体情境中认识、理解单位“1”

2、在具体情境中进一步理解分数的意义

3、通过自学理解分数单位的含义

4、能用分数进行简单的表述和交流,提高数学应用的意识和能力

5、了解分数的产生

过程与方法

在具体情境中学习知识,通过自学学习知识

情感态度价值观

感受和体会数学与生活的紧密联系,树立学习数学的信心

课时目标

同上

教材解读

教材第60页通过两幅插图

1、古人度量物体时遇到的困惑,

2、两个小朋友平均分一个物体的情境,揭示了分数产生的现实需要:在进行测量和分物时,往往不能正好得到整数的结果,这时常用分数来表示。

教材61页“举例说明1/4的含义”是想通过学生的实践来理解

1、一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

2、一个整体可以用自然数1来表示,通常把它叫做单位“1”。

教材62页“做一做”是对分数意义描述的具体化和巩固,也为紧接着学习分数单位提供具体的实例。结合做一做让学生理解分数单位。

“你知道吗”是对分数的写法的历史的介绍。

学情分析

学生在三年级上学期,已初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数的大小,会比较同分母分数的大小,还学习了简单的同分母分数加减法。所以说分数的经验学生已经积累的较多,在学习本课时已有了一定的知识基础。我认为学生在学习本课时应把理解分数的意义,单位“1”,分数单位作为重点,并通过不同类型的习题帮助学生巩固掌握所学。在理解分数的意义时重点要放在单位“1”,平均分,平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达,如1/4表示把单位“1”平均分成4份,取其中的1份。其中的典型习题:7米长的绳子平均分成9段,每段长( ),每段长( )米,作为重点处理的内容

教学重点

理解平均分,单位“1”,分数单位;理解平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达。

教学难点

理解平均分成几份分母就是几,取几份分子就是几,在理解的基础上使学生学会准确表达

教学方法

实践法、讨论法、自学法

教学准备

课件(师),学生学习材料

预习作业

1/4,1/5,5/6,2/7,3/8

读出以上各分数,并说各部分的名称

教学板块

教师课堂行为(注明时间)

学生课堂行为

完成目标

课前活动:检查预习内容

师课件介绍:分数的演变经历了这样一个过程

学生读出分数,说明各部分的名称。

学生观看课件演示

完成目标5

一、了解分数的产生

1、课件演示古代人在测量时的方法,遇到的困惑,提出问题:剩下的不足一个单位得不出整数怎么办?

2、课件演示平均分东西的情境:

提出问题:小男孩能分到个石榴,每人平均分到块月饼,包饼干。

3、师小结:在进行测量、分物时,往往不能得到整数的结果,这时常用分数来表示。

(如学生说出小数,教师也应肯定学生的想法)

4、教师直接板书课题,指出本课的学习目标:

分数的意义,分数单位

学生说说自己的想法

学生回答

完成

目标5、6

二、学习分数的意义

1、举例说明1/4的含义(板书1/4)

生演示完过程后,教师引导提问:

每一个图形为什么要分成4份?(引导学生说出分母是4,所以分成4份)(板书分成几份)

课件或学生实物对比,这样分(不平均分)行不行?(引导学生说出必须平均分)(板书平均分)

为什么只涂了1份?(分子是几就涂几份)(涂其他处行吗?)(板书取几份)

(3)师:我们借助一个个图形弄懂了1/4的含义,你还能借助生活中的一些物体弄懂1/4的含义吗?

课件演示:

4根香蕉,一盘面包,12块水果糖

一排书,一把荔枝

两道文字叙述题

师根据学生回答,演示分法

(如学生回答不出,教师相机引导分母是4就平均分成4份,分子是1,就取其中的一份),

(4)如果老师把图形或物体平均分好,你还能找到相应的分数吗?

(第3、4环节在汇报时)应引导学生说一说怎样做的。

2、总结(结合课件)

一个物体、一些物体等都可以看做一个整体,这个整体可以用自然数1来表示,通常把它叫做单位“1”

把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。

三、巩固练习

1、把一个蛋糕( )分成5份,这样的3份就是( )。

2、下面的涂色对吗?

平均分和不平均分的情况

3、把一堆苹果平均分成6份,2份是( )的2/6

4、5厘米长的一条线段,其中1厘米是这条线段的1/5,这条线段是单位1、( )

5、把单位1平均分成9份,7份是( )

6、先判断下图能表示哪个分数,再圈一圈

1/51/21/3

(10个草莓)

7、把一根木料平均分成4段,每段是这根木料的( )

8、把一根7米长的木料平均分成4段,每段是这根木料的( )

9、把一根8米长的木料平均分成4段,每段是这根木料的( )

每段是( )米。

10、一包饼干有12块,平均分给3名同学,每人分得这包饼干的( ),每人分得(  )块。

11、把一根9米长的木料等距离锯了10次,每段是这根木料的( )

12、一盒巧克力共有16块,平均分给4名同学,每人分得( )块,每人分得这盒巧克力的( ),每块巧克力是这盒巧克力的( )

四、学习分数单位

2、习题检验学习效果

64页第8题

学生比较分数单位的大小

师:谁决定分数单位的大小?分母越( )分数单位越( )

五、拓展练习

64页第七题

阴影部分占全图的几分之几

(1)学生利用学习材料表示出1/4

(2)全班交流

学生在教师引导下回答

学生回答

学生做练习十一的1——4题,汇报。

学生做题,汇报想法。

1、学生自读分数单位的定义

学生做题

完成

目标246

完成

目标1

完成

目标124

完成

目标3

完成

目标16

板书设计

平均分分子是几就取几份

分母是几就平均分成几份

作业设计

(分层作业)

分数小学教学设计 第4篇

教学内容:

苏教版义务教育教科书《数学》六年级上册第46页例4、练一练,第48页练习七第9~14题。

教学目标:使学生经历探索分数除以分数的计算方法的过程,理解并掌握分数除以分数的计算方法,能正确计算分数除以分数的试题。

使学生在探索分数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。

教学重点:

分数除以分数的计算方法。

教学准备:

多媒体课件。

教学过程:

一、复习引新

1、口算。

23÷2 14÷4 512÷10 310÷6

9÷310  4÷45  2÷314  1÷32

2、揭示课题:分数除以分数

二、教学例4

1、出示例4,学生读题,列式。

提问:这是已知什么,要求什么?用什么方法计算?

追问:为什么用除法计算?怎样列式?

2、引导探索:分数除以整数怎么算呢?

(1)请大家画图探索一下这个算式得多少?

各自在书上的长方形里分一分,画一画。

(2)指名到黑板上画一画,使大家清楚地看出是3瓶。

(3)讨论:分数除以整数,能不能用被除数乘除数的倒数来计算呢?

请大家计算一下它的积,看得数与我们画图的结果是不是一样?(一样)

得数相同,你能猜想到什么?

3、练习,验证猜想

完成练一练第1题:先再长方形中涂色表示,看看里有几个,有几个,再计算。

你发现了什么?

4、概括方法

联系前面学习的分数除以整数和整数除以分数的计算,你能说出分数除以分数的计算方法吗?

根据学生的讨论,板书:

三、练习

1、做“练一练”第1题。

各自练习,并指名板演,练习后评议交流。

2、完成练习七第10题。

独立计算后,引导比较,启发思考:什么情况下,除得商比被除数小?什么情况下,除得的.商比被除数大?

3、讨论练习七第11题。

引导:你能不计算,运用已经发现的规律直接填空吗?

4、讨论练习七第12题:

指出:交换被除数和除数,所得的商与原来的商互为倒数。

四、作业:

练习七第9、13、14题。

分数小学教学设计 第5篇

教学目标:

1、让学生通过经历预测猜想——实验观察——数据处理—合情推理—探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

3、培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

教学重点:

使学生理解分数的基本性质。

教学难点:

让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教具准备:

课件,五年级数学学具盒,计算器。

教学过程:

一、呈现材料,发现问题

1、师:老师这儿有一个关于孙悟空在花果山上做美猴王时发生的故事,想听吗?

花果山上的小猴子最喜欢吃美猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均分成四块,分给猴1一块,猴2见了说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块,猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均分成十二块,分给猴3三块。

[评析:创设情境,在学生喜欢的人物分饼的故事中直接导入本课,这样设计可以吸引学生的注意,让学生主动感知,主动去思考,激起学生的探究兴趣,让学生产生想获知结果。内含情感与态度目标:孙悟空,做事认真仔细,机智,勇敢,本事大等。]

师:听到这里,你有什么想法吗?或你有什么话要说吗?

生1:我觉得孙悟空很聪明。

生2:我认为三只小猴分到的饼是一样多的。

生3:我认为猴王这样分很公平,第1只小猴分到了一只饼的1/4,第2只小猴分到了一只饼的2/8,第3只小猴分到了一只饼的3/12,这三只小猴分到的饼是一样多的。

[评析:一般的教师会在这里提出“哪只猴子分得的饼多?”或“你认为猴王这样分公平吗?”这样的问题。但这位教师却提出“听到这里,你有什么想法吗?或你有什么话要说吗?”。这个问题优于前两个问题是因为学生在思考时思路更深、更广。有效的问题有助于摆脱思维的滞涩和定势,促使思维从“前反省状态”进入“后反省状态”,问题的解决带来“顶峰”的体验,从而激励再发现和再创新,有效的问题有时深藏在潜意识或下意识中,“顿悟”由此而生。有效的创设问题可以激发学生创新意识。内含情感与态度目标,体现公平。]

2、师:大家都觉得其实三只小猴分到的饼一样多,那你们有什么方法来证明一下自已的想法,让这三只小猴都心服口服呢?怎么验证?

(1)师引导学生充分利用桌面上学具盒中的学具(其中一条长方形纸片为事先放入,其它都是五年级数学学具盒中原有的),小组合作,共同验证这三个分数的大小?

(2)师:实验做完了吗?结果怎样?哪个小组先来汇报验证的情况?

组1:我们组把24根小棒看作单位“1”,平均分成4份,其中的一份有6根,就是1/4。平均分成8份,其中的二份有6根,就是2/8。平均分成12份,其中的3份也有6根,就是3/12。所以1/4=2/8=3/12。

组2:我们组把24个小立方体看作单位“1”,平均分成4份,其中的一份有6个,就是1/4。平均分成8份,其中的二份有6个,就是2/8。平均分成12份,其中的3份也有6个,就是3/12。所以1/4=2/8=3/12。

组3:我们把一个圆平均分成4份,取其中的一份是1/4,我们把同样大小的圆平均分成8份,取其中的两份是2/8,我们再把同样大小的圆平均分成12份,其中的3份用3/12表示,我们再把圆片的1/4、2/8、3/12叠起来是一样大的,所以1/4=2/8=3/12。(注1/4圆是学具中本来就有的,2/8是用两个1/4圆合在一起,3/12是用2个1/3合在一起)

组4:我们组是这样验证的。我们把同样大小的长方形纸平均分成4份,其中的一份是1/4,取另外一张再平均分成8份,其中的两份是2/8,接着取另外一张继续平均分成12份,其中的3份是3/12,然后也叠在一起,大小一样,所以我组也认为1/4=2/8=3/12。

组5:我组与他们的验证方法都不一样,我们是计算的:1/4=1÷4=0.25;2/8=2÷8=0.25;3/12=3÷8=0.25。三个分数都等于0.25,所以1/4=2/8=3/12。

[评析:书本上的设计是用折纸来验证这三个分数相等,在这里执教者大胆的放大教材,把一系列探究过程放大,把“过程性目标”凸显出来。同时也为学生探究方法的多元化创造了条件,出现了多种验证的方法。还有这样设计把一些知识联系起来,用计算器的目的,是和五年级上学期的一节计算器课联系起来,而且为验证猜想做准备,可以比较分数的大小,节约时间。和单位“1”的概念联系起来,体现出了单位“1”概念中的两层含意。]

3、组织讨论

(1)师:既然三只小猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?(投影出示分饼图)

板书1/4=2/8=3/12

(2)你能从图上找到另一组相等的分数吗?

板书3/4=6/8=9/12

[评析:书本例1为比较3/46/8和9/12的大小。执教者在创设情景时选择的分数是有目地的]

4、引入新课

师:黑板上二组相等的分数有什么共同的特点?学生回答后板书。

生:分数的分子和分母变化了,分数的大小不变。

师:我们今天就来共同研究这个变化的规律。

5、引导猜测

师:你们猜猜看,在这两组相等的分数中,分子和分母发生了怎样的变化,而分数的大小不变。

生1:分子和分母都乘以一个相同的数,分数的大小不变。

生2:分子和分母都除以一个相同的数,分数的大小不变。

生3:分子和分母都加上一个相同的数,分数的大小不变。

生4:分子和分母都减去一个相同的数,分数的大小不变。

师:根据学生回答板书

[评析:这样设计注意了知识背景的丰富性,拓宽了“分数基本性质”的研究背景。在教学中,学生充分观察学习材料,发现问题后,教师引导学生提出猜测。学生的实际猜想可能会出现观点不一,表达方式不同,或者不够完整,甚至是错误的,这都不重要,重要的是它是根据学生已有的知识经验提出的,能够自已提出问题,已经向探索迈出了可喜的一步。教师留给了学生足够的思空间,让学生充分展现心中的疑惑,呈现了四种不同的假说。如此一来,学生不但是进入到了知识的学习过程中,更是进入到了知识的研究过程中。“分数基本性质”的研究背景从知识层面上来看已经拓宽了,从以前的只局限于“分子和分母同时乘(或除以)一个相同的数,分数的大小不变”拓宽到对““分子和分母同时乘(或除以、或加上、或减去)一个相同的数,分数的大小不变”的研究,有利于学生更为充分地经历“性质”形成的过程,全面地理解和认识“分数的基本性质”,同时还为沟通加、减、乘、除四种情况在分数的大小不变过程中的区别和联系奠定了基础。]

二、活动研究,探究规律。

1、引导研究,感知规律

师:猜测是不一定正确的,需要通过验证才能知道猜测是不是有道理,规律是否存在。我们需要对以上的猜测进行验证。你们准备如何进行验证?

生:举一些例子来验证

师:怎样举例验证呢?我们以其中的一个猜测来试试看好吗?我们选哪一个为好?

生:分子和分母都乘以一个相同的数,分数的大小不变。

师:好,我们就选这个,试试看。

学生以小组为单位进行尝试验证,教师作适当指导。

反馈:根据学生回答板书

1/2=0.5

1×2/2×2=2/4=0.5

1×3/2×3=3/6=0.5

师:看了这些小组的举例验证,能说明这个猜测有道理吗?

有什么要补充的吗?

(学生没有答出0除外)

师:谁能写出几个与1/3相等的分数。比一比谁写的多。

生回答,师板书1/3=2/6=3/9……

师:这样写得完吗?

生:不能

师:分子和分母是不是可以乘以所有的数。

生:0要除外。

师:为什么0要除外呢?

生:0不能做除数,也不能做分母。

[评析:学生在巩固知识的过程中得出结论:这样是永远也写不完的。这时,教师适时点拨,将学生的思维引向更深层次,从而自然得出“0除外”的结论。这样形成的记忆是深刻的。]

2、自主研究,理解规律

师:我们已经用举例验证的方法验证了“分数的分子和分母都乘以一个相同的数分数的大小不变是正确的。那么,其它三个猜测是不是也是正确的呢?接下来我们每一个小组选取一个猜想进行验证。

学生自由选择,教师适当进行调配。

师:为了在研究中能够节约时间,我给大家提供了一些材料,你可以借助这些材料进行验证。当然,你有更好的方法也可以用。

学生小组合作进行研究,教师作适当指导。反馈交流

小结

师:看来在分数里,只有分数的分子和分母都乘或都除以相同的数(0除外)分数的大小不变,而分子和分母同时增加或者同时减少相同的数,分数的大小是会变的。这就是我们今天学习的内容。

出示课题:分数的基本性质

师:你们认为性质中哪几个字是关键字。

生:“都”,“相同的数”,“0除外”

生齐读投影上的分数的基本性质

[评析:这样的设计使学生对四个“假说”的验证过程认知比较充分。这不仅为学生准确理解和把握“分数的基本性质”提供了丰富的感性材料,同时,也为学生体验数学学习的过程创造了条件。教师在该环节的处理上出于对学生实际的考虑,安排了两个层次。第一层次选择“分子和分母都乘以一个相同的数,分数的大小不变。”这一猜测进行验证,一是让学生充分体验一次验证的过程,认识到过程中的注意点,二是有利于教师下一步的调控和指导。正是有了这样的引导,学生在第二层次的独立验证活动中,才能够更多地关注数学学习内在的东西,排除了一些不必要的干扰。学生探究的过程比较清晰,对学习方法的体验也比较深刻、到位。由于这样的设计,使整节课的重心从关注知识的传授转移到关注学习方法的指导上。更重要的是这样的设计体现出了猜测——验证——结论的思维模式。]

3、沟通说明,揭示联系。

师:今天我们学习的分数的基本性质与我们以前学过的什么知识很相似。

生:商不变性质

出示商不变性质

师:分数的基本性质与商不变性质有什么相通的地方吗?

生:分数中的分子相当于除法中的被除数,分母相当于除法中的除数,分数值相当于商。

师:我们平时所学的有些知识和知识之间是有联系的。有时候与我们身边的事也是有联系的。

[评析:引导学生沟通分数的基本性质与商不变性质之间的联系,可以使学生体会到知识与知识之间有时是可以联系起来的。这样的设计有效的培养了学生的比较、分析、综合的能力。]

出示动画片断。(注孙悟空有一次因一时大意,被妖怪关在了一个金钵中,金钵能随孙悟空变大而变大,随孙悟空变小而变小,孙悟空出不来。)

师:孙悟空为什么跑不出来,这与我们今天学的知识是不是有点相似。

生:分数的基本性质。

[评析:数学中的概念是比较抽象的,这样的设计可以帮助学生理解和记忆。同时也可以让学生体会到知识与生活中的一些现象是可以联系的。

例如自从一八四五年德国化学家霍夫曼发现苯之后,许多化学家绞尽脑汁要它的分子结构,然而对当时的人类从未想到环状的分子结构的存在,所以化学家们纷纷撞壁而相继放弃。一八六五年某个寒夜,已经研究多年不肯罢手的"化学家库凯里在一整天徒劳无功的探索后,歪在火炉边打盹,意识滑入梦乡,然后,奇怪的事情发生了,他在梦中看见一大堆原子在眼前雀跃,其中有一群原子排成长长的链,在那儿扭动、盘卷,再仔细一看,啊!是一条蛇咬住自己的尾巴,而且得意洋洋地在他面前猛烈旋转!像被闪电击中,库凯里立刻惊醒,领悟到苯的分子结构是前人未曾梦想过的封闭环状,难怪那些持旧有的开放式链状观点来研究的专家通通碰了一鼻子灰。从此,化学研究也因为这个革命性的发现而进入新的里程碑。在那个看见蛇咬尾巴的梦境中,库凯里领悟到苯的环状结构式。

这样设计可以使学生在回答什么是分数的基本性质时,先想到动画,再用语言表达出内容。同时也可以使学生体会到运用这样的思维方式为以后遇到难以解决的问题是可以提供一定的帮助的。内容情感与态度目标:做事或解题时不能粗心大意。]

师:猴王运用什么规律来分饼的?你们会运用今天的知识来解答问题吗?

三、应用性质,解决问题。

1、出示例2

思考:要把1/3和16/24分别化成分母是6而大小不变的分数,分子、分母怎么变化?变化的依据是什么?板书

2、多层练习,巩固深化

(1)书本试一试

游戏(第一关:初露锋芒、第二关:勇往直前、第三关:再接再厉、第四关:大获全胜。每一关都有相应的练习题)

[评析:练习设计层次安排合理、形式多样、由浅入深。采用游戏的形式,抓住学生好胜的心理,在不知不觉中完成了练习,节约了练习的时间。体现了趣味性、生动性、开放性。既巩固了新知,又发展了思维。]

四、课堂总结

师:今天我们学习了分数的基本性质,回忆一下,我们是怎样学的?

生1、我们是用举例的方法学的。

生2、我们是用验证的方法学的。

生3、我们是通过比较发现了规律。

师:是的,这节课我们在学习过程中,通过“猜想”、举例、验证等方式,概括得出了分数的基本性质并且运用这一知识解决了一些问题。

师:我这里还为大家准备了一个故事。(猜想加陈景润的故事)

师:你听了有什么启发吗?课后同学们可以互相讨论一下。

[评析:让学生回忆这节课的学习历程和发现的一些规律,这样做更能体现“过程”。让学生带着问题下课,把对数学研究的兴趣延伸至课外,鼓励学生大胆创新。]

分数小学教学设计 第6篇

教学目标

使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答基本的分数除法应用题。

进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重难点

分数除法应用题的特点及解题思路和解题方法。

教学准备

教学过程设计

教学内容

师生活动

一、 复习引新

二、教学新课

三、巩固练习

四、课堂小结

五、作业

1、先说出单位1,再说出数量关系式

(见课件)

2、做43页复习题

问:这道题怎样想?

3、引入新课

解答分数应用题,要先确定单位1,再找出题目中的数量关系式,然后列式。这节课就继续按照这样的思路来学习分数应用题。

1、教学例1

(1)出示例1,学生读题,说明条件和问题。

问:关键句是哪一句?谁占果树总棵数的2/5?

单位1是谁?

(2)让学生画出线段图

(3)学生独立列式解答。

(4)讨论:哪种方法比较简单?

指出:求单位1的应用题一般来说用方程解。

2、比较解法

请同学们比较例1和复习题。

问:在条件、问题上有什么相同点和不同点?

在解法上有什么相同点和不同点?

小结:解答分数应用题,要先确定单位1,再找出题目的数量关系再解答。

1、做练一练

让学生先写出数量关系式再解答。

2、做练习十第4题

问:要怎样想?根据什么来列方程?

今天学了什么?解答此类应用题要怎样思考、分析?

练习十第2、3题

课后感受

本节课的内容比较简单,学生有一定的基础,所以花一定的时间让学生画线段图,让学生提高解题的能力,这对学习较复杂应用题有一定的帮助!

分数小学教学设计 第7篇

教学内容:义务教育六年制小学数学第十册分数的意义。

教学目标 :1.使学生知道分数的产生和其它数学知识一样是由人类的生产和生活实际中产生的。

2.使学生理解分数的意义和单位“1”的含义。

3.培养学生形象思维,抽象概括能力和初步的逻辑思维能力。

教学重点与难点:让学生理解分数的意义是本节课的重点,讲清单位“1”的含义是本节课的难点。

教具准备:ppt课件

学具准备:糖果、花生、香蕉若干,

学具袋(正方形、长方形、圆形纸片,小棒20根)

教学过程:

课前准备:今天由我和大家一起上数学课。同学们愿意吗?我先给同学们做一个自我介绍。就让我们通过这节课都把自己最棒的一面展现给大家吧!有信心吗?上课!

一、创设情境,揭示课题。

老师今天给同学们带来了一些小礼物!

出示:花生若干个(每位同学两个)老师想让同学们一起分享,我这一共有60颗花生平均分给每一位同学,每位同学可以分几颗?(表扬学生)接着问:老师这里还有糖30块(每人一个)也想平均分给每个同学,每位同学可以分到几块?(继续表扬)。

拿出一把香蕉(每人合半根)接着问:我这里有15根香蕉,也想平均分给每一个同学,每人分多少根?(学生可能说半根,也可能说0.5根,)教师都给予肯定。其实它还可以用分数来表示,(板书1/2)今天我们就一起来学习《分数的意义》从而引出课题板书。

二、教师引导,合作交流。

1、分数的产生 同学们知道吗?早在古时候就已经有了分数,让我们一起来了解一下分数的产生!

(出示情景图)让学生观察说说看到了什么?他们在做什么?

学生回答:他们在测量石头的长度。

教师解说:他们用一根打了结的绳子来测量石头的长度,每两个结之间的一段表示一个单位长度。发现这块石头长3段多一点。于是在旁边记录人提出疑问:剩下的不足一段怎么记?(引出分数的概念)

让学生说说自己的想法。

生活中往往不能得到整数的结果(出示另一个情景图,让学生填空)

教师小结:在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

2、分数的意义

(1)你能举例说明1/4的含义吗?

出示课件:(书上61页小精灵的问题)

让学生在自己理解的基础上举例说出四分之一的含义

(突出关键词:平均分),教师板书。

出示图片:香蕉和面包(学生说出含义)

教师总结:我们可以把一个物体看作一个整体也可以把一些物体看作一个整体。

(2)小组交流举例(利用学具)把一些物体看作一个整体的分数的含义。

教师可以这样示范:把()看作一个整体,平均分成()份,表示这样的()份,就是()。

小组汇报

教师小结:(出示课件)一个物体,一些物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。一个整体可以用自然数1来表示,通常把它叫做单位“1”。

三、巩固训练,深化提高。

1、学生独立完成书上练习十一1、2、3题。

集体订正

2、课件出示做一做,小组合作完成。

教师总结:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。例如,2/3的分数单位是1/3.

分数小学教学设计 第8篇

教学目标:

1、结合具体的情景,体会理解分数加减法的意义。

2、在具体的情景中,理解掌握异分母分数加减法的计算方法与法则。

3、让学生在讨论交流中,感知转化的数学思想,体验成功的乐趣。

教学重点:

理解并掌握异分母加减法的计算方法与法则。

教学难点:

掌握异分母分数加减法的算理与算法。

教学过程:

一、复习引入

(一)复习有关分数单位的知识。

1、什么叫分数单位?(把单位“1”平均分成若干份,表示这样的一份的数,叫 做这个分数的单位。

2、填一填 7/16 的分数单位是( ) ,它有( )这样的分数单位。

7/16 和 1/16 的分数单位相同吗? 1/2 和 1/4 的分数单位相同吗?

(二)复习通分

2/7 和 1/3 1/2 和 1/4 师:咱们已经掌握整数,小数加减法的计算方法,而分数加减法的计算,咱们从 这节课开始研究。

出示课题:分数加减法

二、创设情境、提出问题

1、同分母分数加减法 出示例 1(展示课件)

师:
你瞧,工人叔叔正在说些什么?请同学们根据他们的对话,提出合适的数学 问题,并解答。(四人小组合作学习)

抽学生口头汇报,同时老师根据学生的回答课件出示。

引导学生观察计算结果,让学生明白用分数表示计算结果时,要约成最简分数。

生 1:今天一共铺了这个广场的几分之几? 列式为:1/16+1/16=8/16=1/2。答:今天一共铺了这个广场的 1/2。

生 2:下午比上午多铺了这个广场的几分之几?(或上午比下午少铺了这个广场的几分之几?) 列式为:7/16—1/16=6/16=3/8。答:下午比上午多铺了这个广场的 3/8。

师:你们真能干,不仅提出了问题,还正确的解答出来了。

师:同学们,你们知道他们俩是怎样把结果算出来的吗?同桌议一议。学生讨论,汇报讨论结果。

师:有谁能用自己的话说一说分母相同的分数怎样加减呢?

生:分母相同的分数相加减,分子相加减,分母不变,最后结果能约成最简分数的要约成最简分数。

生举出类似的算式计算(全班练习)

2、异分母分数加减法

师:孩子们真能干!那这两个问题又是怎样解决的?前几天和今天一共铺了这个广场的几分之几? 今天比前几天多铺了这个广场的几分之几?

生:1/2+1/4=3/4 ,1/2-1/4=1/4 师:这两个算式与前边的算式的区别?(分母不同)

师:说说结果是怎样得来的?预设:画图得出结果。

把分母变成同分母分数,再计算得出来的。

把分数化成小数计算,再把计算结果的小数化成分数。

……

师:大家积极的开动脑筋,探索出了这么多解决问题的方法,真了不起!但是这几种计算方法是否对每个分数加法算式都是适用呢?

学生说出自己的意见

师:同意既适用又简便的方法(先同分,再计算)再把 1/2+1/4=( ),1/2-1/4=( )全班练习,写出计算过程。

1/2+1/4=2/4+1/4=3/4 1/2-1/4=2/4-1/4=1/4

师:同学们在计算过程中,最关键的步骤是什么?

生:最关键的步骤是先通分,再计算。

师:说一说,异分母分数的计算方法?

生:异分母分数相加减,先通分,再按同分母分数加减法计算。

三、学生练习

1、基础练习 填一填:(出示课件)

①同分母的分数相加减,(分母 )不变,( 分子 )直接相加减,计算的结果 要化为( 最简分数 )。

②异分母分数相加减,先(算一算:
4/15+7/15=11/15 5/6+7/8=20/24+21/24=41/24

2、拓展练习 下面的题有什么特点?怎么算比较快? 1/4+1/3= 1/3+1/7= 两个分母是互质数,分子都是 1。

得出:1/a+1/b=(b+a)/ab

3、接龙游戏

1/2+1/3 3/4-1/2

四、课堂小结

1/2-1/3 2/3+1/6 1/2+3/4 2/3-1/6 1/a-1/b=(b-a)/ab 1/3-1/4= 1/2-1/5= 17/18-13/18=4/18=2/9 7/9-2/3=7/9—6/9=1/9 通分),再按( 同分母分数加减法 )计算。

(每组 6 个同学,一个接一个地计算,看哪组又对又快)

分数小学教学设计 第9篇

教学目标:

1.经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2.经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。培养学生的观察、比较、归纳、总结概括能力。能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

3.经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。体验数学与日常生活密切相关。

教学重点:

理解分数的基本性质。

教学难点:

能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

教学过程:

一、创设情境,激趣引新,

1、师:故事引入,揭示课题

同学们,你们听说过阿凡提的故事吗?今天老师这里有一个“老爷爷分地”的数学故事,你们想听吗?(课件出示画面)谁愿意把这个故事讲给大家听?指名读故事(尽可能有感情地)

故事:有位老爷爷要把一块地分给他的三个儿子。老大分到了这块地的,老二分到了这块地的,老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

2、师:你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?

3、学生猜想后畅所欲言。

4、同学们的想法真多啊!聪明的阿凡提是怎么让三兄弟停止争吵的?

二、探究新知,解决问题

1、动手操作、形象感知

(1)、三兄弟分的地真得一样多吗?你能用自己的方法证明吗?

(2)学生独立操作验证。

方法1、涂、折、画的方法

方法2、计算的方法。

方法3:商不变的性质。

(3)观察,说说你发现了什么?

分数小学教学设计 第10篇

教材分析

1、要求学生认识百分数,理解百分数的意义,会读写百分数;
在认识百分数的基础上,会读写百分数;
本节内容在教材中是独立的,是学生新认识的,与前后内容无关联。

2、百分数在现实生活中有着广泛的应用,因此认识百分数势在必行。

学情分析

1、本节课的内容是学生初步接触的知识,老师若充分调动学生的积极性,学生会学的很有兴趣的。学生在课后的作业中表现的也不错,都能正确的读、写百分数。

2、学生认知发展分析:由于我们是农村的学生,他们对百分数的了解不是太多,因此在教学百分数的意义时学生理解起来是有难度的。

3、学生认知障碍点:学生对百分数意义的理解有困难。

教学目标

1、知识与技能:

(1)、联系生活实际,理解百分数的意义,能够正确读写百分数。

(2)、了解分数与百分数的区别与联系。

2、过程与方法:

通过观察思考、比较分析、综合概括,经历百分数意义的探索过程,让学生主动参与,学会交流讨论。

3、情感态度与价值观:

通过学习培养学生自主探究的学习欲望,充分感受数学知识在生活中的应用价值。

教学重点和难点

教学重点:

理解百分数的意义。

教学难点:

了解百分数与分数的区别与联系。

分数小学教学设计 第11篇

教学内容:五年级下册《分数的意义》

教学目标:

1、使学生知道分数的产生过程。

2、使学生感受到数学知识同样是在人类的生产和生活实践中产生的。

教学重点难点:

理解分数的意义。

教具准备:

米尺,长方形、正方形的纸。

教学过程:

一、引入

1、复习分数的知识。

(1)师:同学们,我们在三年级时已经初步认识了分数,还记得我们都学了分数的哪些知识吗?

(  )

(  )

(  )

(学生通过回忆说出已学过的分数知识。可能会回答分数各部分的组成,也可能讲到分数的意义。)

(2)点击出示:

师:这个分数如何读?

师:你能说出这个分数各部分的名称吗?(根据学生回答分子、分母、分数线点击出现结果。)

2、复习分数的表示方法。

(1)师:回忆一下,我们还可以用什么来表示分数?

(学生可能回答:用图、线段或正方形来表示分数。)

(2)点击出示:用分数表示图中的涂色部分。

师:通过刚才的复习,我发现大家对于分数已经有了很多的了解,但分数究竟是如何产生的呢?分数与我们的生活又有些怎样的联系呢?今天我们就继续来了解分数。

[设计意图说明:学生在三年级时曾经学习过分数的知识,通过复习,回忆所学知识,为下面的学习做好铺垫。]

二、新授

探究一:通过故事和动手实践,认识分数的产生过程以及与生活实际的联系。

1、点击出示书60页第一幅图片。

师:大家听说过埃及金字塔吗?我们知道埃及金字塔是人类文明发展史上一个伟大的工程,在当时没有精密的测量工具的时候,人们只能用绳子等固定长度的物体作为测量的参照,可是当石头比绳子短的时候,又该如何测量如何记录呢?

(学生可能回答:用分数表示。)

师:对,古埃及人将一根绳子平均分成了若干份,再去测量。这样就能具体记录石头的长度,古埃及人就是用自己的聪明才智,把不足一段绳子长度的`石头或超过一段绳子长度的石头用分数的表示方法记录,才能在没有精密仪器的情况下将金字塔建造得非常坚固,石块的接缝也是非常紧密,这也是人类发展史上的一大奇迹。

[设计意图说明:通过故事,激发学生的学习兴趣,同时又对分数的产生和运用有了一定的认识。]

2、实践感知。师生合作测量黑板的长度。

师:虽然我们现在已经用到了米尺、三角尺、直尺等常用的学习工具,但在具体测量物体的长度时,也不一定正好是整数的结果。下面就请一名同学上台和老师一块来测量一下黑板的长度,看看能否用整米数表示。

(师生合作测量黑板的长度。)

师:大家看到,刚才我们用米尺量了几次后还剩下一段,不够一米,这时还能否用整米数表示?

(学生可能回答:不能)

师:在进行测量时,有时不能得到整数结果,这时常用分数来表示。(点击出示)

[设计意图说明:通过故事抽象感知以后在让学生通过实践认知,进一步了解了分数产生的过程,也感知了分数与生活的紧密联系。]

探究二:用分数计算。

1、点击出示书60页第二幅图片。

师:大家看图,小明和小丽在分东西,桌上有什么?

(学生可能回答:一个西红柿、一块蛋糕、一包饼干)

师:如果把西红柿平均分给两个人,可以怎样分?你可以用算式表示吗?

(学生可能回答:1÷2,在三年级学习的基础上,有的学生能回答出个。)

师:1÷2的结果能用整数表示吗?(不能)

师:我们知道1÷2就是将1平均分成两份,每一份是多少?()

师:那么将一个西红柿平均分成两份,每一份是多少呢?(个)

师:看看小明和小丽是如何分的?

(点击出示:
             )

[设计意图说明:这一环节需要引导学生将生活实际中的分东西用数学算式表示,同时以最简单和直观的方法将除法算式与分数联系起来,同时又引导学生进一步理解分数的意义。]

2、小练习

师:那么同样的,小明和小丽每个人平均分到几块蛋糕?几包饼干呢?你是怎样想的?

(学生可能回答,并简单表述将一块蛋糕平均分成两份,每一份是块。)

[设计意图说明:在前面学习了分数的意义后,马上根据书本内容进行练习,使学生对于分数的意义更了解。]

3、小结:

在人们实际生产和生活中,人类在测量和计算的时候,往往不能得到整数的结果,这就需要用一种新的数来表示,这样就产生了新的数—分数。

(点击媒体出示:在进行测量、分物或计算时,往往不能正好得到整数的结果,这是常用分数来表示。)

4、资料介绍。

师:最初,人们只认识一些简单的分数,如二分之一、三分之一等。而且也不是一开始就出现现在的表示方式。

点击出现:

师:从图中你了解到了哪些信息?

(学生根据自己的观察回答,教师提醒,补充说明。)

[设计意图说明:这一环节通过分数发展的几个阶段,让学生了解分数发展过程中不同的表示方法,让学生对分数的产生和发展有更深入的认识,进一步激发学习分数的兴趣。]

三、练习

1、说出下面图形所表示的分数。

(  )   (  )   (  )

[设计意图说明:这个练习环节是为了激发学生的学习兴趣,同时进一步巩固学生对于分数产生过程的认识。]

2、填空。

(1)将1个苹果平均分给2个小朋友,每人可以分到   个苹果。

(2)将1个苹果平均分给3个小朋友,每人可以分到   个苹果。

(3)4个小朋友分一块蛋糕,如果每人分到的蛋糕相同,每人分到   块蛋糕。

(4)将1堆糖平均分给5个小朋友,每人分到这堆糖的   。

师:这里可不可以说每人分到粒糖?(引导学生辨析将1粒糖平均分成5份与将1堆糖平均分成5份的区别。)

[设计意图说明:这个练习环节的设计旨在让学生进一步理解分数的意义,题目用三种不同的方法表述平均分的意义,让学生能更好的理解分数的意义及不同的表述方式,同时也为后面学习分数的单位打下基础。]

四、小结

通过今天的学习,我们知道了在很早以前我们人类为了解决实际生产和生活中不能用整数表示结果的问题,就已经开始用分数来表示了,经过几千年的发展,我们对于分数的应用也变得更熟练更广泛。希望通过学习,我们每一位同学也能更多的了解分数,更好的学习分数知识。

五、作业

将一张长方形或正方形纸平均折成若干份,然后将其中的几份涂上颜色,用分数表示。

分数小学教学设计 第12篇

一、教学目标

目标1:引导学生在已有知识、经验的基础上,经历解决一个数除以分数的计算方法的探索过程,归纳一个数除以分数的计算法则。

目标2:引导学生借助分数的意义、份数和数量的对应关系,运用转化方法解决问题,在学生交流活动中培养合作能力,知识运用能力,积累运用转化、迁移方法学习数学的活动经验,渗透数形结合解决问题的思想。

目标3:使学生在知识运用和问题解决过程中得到成功体验,激发学生进一步学习、探索数学的兴趣。

二、学情分析

学生在分数乘法的学习中,能借助已有知识和几何模型理解分数乘法的算理,归纳出分数乘法的计算方法。在《分数除法》单元的前2个课时的学习中,学生再次运用数形结合的方法,分析和总结出分数除以整数的计算方法,这都为学生研究、理解“一个数除以分数”的算理和计算方法积累了学习经验,通过本节课的学习,学生对“分数除法”所蕴含的数学思想方法会有进一步的理解,积累会更加丰富的数学经验。

三、重点难点

重点:引导学生借助分数的意义、份数和数量的对应关系,运用转化方法解决问题,在学生交流活动中培养合作能力,知识运用能力,积累运用转化、迁移方法学习数学的活动经验,渗透数形结合解决问题的思想。

难点:使学生在知识运用和问题解决过程中得到成功体验,激发学生进一步学习、探索数学的兴趣。

四、教学过程

4.1第一学时

4.1.1教学活动

活动1【讲授】

一、明确学习内容,导入新课

师:今天我们继续研究《分数除法》。

二、创设情境,研究除法计算

1、确定思路,列出算式

(1)提问:比较谁装得快,需要知道什么?

(2)怎样计算三人的工作效率,依据是什么?

理解题意,尝试计算

(1)÷2

在上节课的研究中我们知道了÷2就是求的是多少。

(2)150÷怎样计算

它与前面我们研究的分数除法有什么不同?

那么150÷又是求什么呢?解决分数问题的关键是正确理解分数的意义,引导:“小李3/4小时装了150千克”这句话你怎样理解?

根据作答情况,引导学生借助示意图分析题意,检验作答结果。

明确:也就是说其中的3份是150千克,4份就是1小时装的千克数。

请同学们根据理解,自己试着解答150÷

班内交流:

追问每一种算法的依据是什么。

说明:这几种计算方法都是在求小李的工作效率,所以可以把这些算使用等号连接起来。(板书:150÷3/4=150×1/3×4=150×4/3=200千克)

计算÷

回忆,我们是怎样研究150÷的计算的?

请你仿照上面的方法和步骤,尝试解决÷

归纳:这几种算法都是计算出了÷的商,所以也可以用等号连接算式(板书):3/25÷2/5=3/25×1/2×5=3/25×5/2=3/10吨=300千克

现在问题解决了吗?

问题解决后我们再回过头看看一看刚才研究的两个分数除法的计算过程,有什么共同的特点?

说一说:一个数除以分数怎样计算?

再联系上节课研究的分数除以整数,现在想想可以怎样概括分数除法的计算方法?

第三阶段

三、巩固练习,拓展提高

(一)基础练习

1、填空。(略)

2、选择。(按点2)

教师追问错因

3、计算。(按点3)

根据统计结果,决定是否进行计算(2)的练习。

(二)提高拓展

[说明:图片3]

四、总结提升,谈谈收获

分数小学教学设计 第13篇

教学目标:

1、使学生会熟练地计算简单的同分母分数的加、减法。

2、在理解分数意义的基础上,使学生学会解决简单的有关分数加减法的实际问题。

3、培养学生自主学习的精神,动手操作能力和解决问题的能力。

教学过程:

一、复习导入

1、比较下列分数的大小,并说一说你是怎么比的。

1/3○1/2 1/6○5/6 1/5○1/8

4/7○7/7 1/9○1/1 3/3○2/2

2、用分数表示图中的阴影部分。(p102第5题)

3、谈话导入,揭示板书课题。

二、探究体验

1、完成p101第3题。

(1)指名读题,说一说题中的信息和问题。

(2)指名解决问题,说一说你是怎么想的?

(3)生交流点评,集体订正。

2、完成p102第4题。

(1)指名说题意然后口答。

(2)独立完成在课本上。

3、完成p103第8题。

(1)观察涂色部分占长方形的几分之几,没涂色部分占长方形的几分之几?

(2)指名计算,集体交流反馈。

4、完成p103第9题。

(1)分小组试一试、剪一剪。

(2)组织全班汇报交流。

5、完成p103第10题。

(1)生独立完成,看能填出几种?

(2)组织全班汇报交流。

三、实践应用

1、生独立完成p102第6题。

2、学生完成p102第7题。

四、全课总结

1、通过今天的练习,你有什么新的收获?

2、师总结。

教后反思:

分数小学教学设计 第14篇

教学内容:

人教版五年级下册第四单元第一课时《分数的产生和意义》。

学情分析:

在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。

教学设想:

本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。

教学目标:

1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

2、经历认识分数意义的过程,培养学生的抽象、概括能力。

3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

教学重点:

明确分数和分数单位的意义,理解单位“1”的含义。

教学难点:

对单位“1”的理解。

教具和学具:

卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

教学过程:

一、创设情景,温故引新。

师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

二、教学分数的产生。

能根据成语说出下面的分数吗?

一分为二()七上八下()百里挑一()十拿九稳()

1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。呈现情境图,介绍分数的起源和发展历史。

3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

三、教学分数的意义。

1、师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

出示一个1/4的正方形的阴影部分。

师:阴影部分可以用什么分数表示?它表示什么意思?

2、师:下列图中的阴影部分能用1/4表示吗?为什么?

如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

(强调一定要平均分)(板书:平均分)

3、动手操作,探索新知。

(1)操作。

师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。

学生动手操作,教师巡视。

(2)交流

师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

小组交流。

(3)认识单位“1”。

师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

(显示:一个物体)

把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(显示:一个计量单位)

把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(显示:一些物体)

师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(显示)

师:(投影出示):我们可以把这3只象看作一个整体吗?

我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

我们还可以把哪些物体也看成一个整体呢?(学生举例。)

师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,(显示)强调说明:

①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。

②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

(4)理解分子分母的意义。

师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

生:1/2

②师:为什么可以用1/2来表示?

③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

四、教学分数单位。

师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的`计数单位又是怎样规定的?

显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

加强练习,深化概念。

练习:

1、35表示把()平均分成()份,表示这样的()份,它的分母是(),表示();
分子是(),表示()。

2、67的分数单位是(),有()个这样的分数单位。

3、说出每个分数的意义。

(1)五(1)班的三好生人数占全班的29。

(2)一节课的时间是23小时。

4、课本练习十一第9题。

5、判断(对的打“√”,错的要“×”)。

(1)一堆苹果分成4份,每份占这堆苹果的14()

(2)把5米长的绳子平均分成7段,每段占全长的57()

(3)14个19是914()

(4)自然数1和单位“1”相同。()

五、小结。

今天这节课我们学习了?你有哪些收获?

分数小学教学设计 第15篇

教学目标

1、了解分数的产生,让学生理解单位“1”不仅是一个物体,许多物体也可以看成单位“1”。

2、学生能掌握单位“1”平均分成若干份,表示其中一份或者几份的数,叫分数。

3、能用分数表示部分与整体的关系

4、学生能知道某一个量是整体的几分之几。

情感态度与价值观:体会数学在日常生活中的应用。

教学重点:

使学生理解"分数"的意义,弄清分母,分子及分数单位的含义.

教学难点:

使学生理解"分数"的意义,弄清分数单位的含义.

教学准备:课件

教学过程

一、板书课题:同学们今天我们一起来学习分数的意义。

二、揭示目标:这节课的目标是什么呢?请看:(出示学习目标),这个目标能当堂达到吗?:

三、自学指导:请同学们打开书第45-46页,认真看课本内容边看书,并思考以下问题

1、什么情况下用分数表示。

2、分数四分之一表示什么

3、什么叫单位“1”

4、什么是分数单位?

五分钟后比一比,谁自学最认真,谁能做对检测题。

四、先学

一)看书(看一看)

学生看书自学,教师巡视,确保每一名学生都在紧张的自学。

(二)检测(做一做):

1、完成课本46页做一做,指明学生板演,其余学生做练习本上。(要求字写的大小适中,字体端正。)

2、教师巡视发现错例,准备二次备课。

五、后教

(一)更正:

观察黑板上的题,发现错误的进行更正。(不同颜色的粉笔)

1、看做一做的第1空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

2、看做一做的第2空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

3、看做一做的第3空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

4、看做一做的第4空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

通过刚才的解答,我们可以看出,(总结)一堆糖可以看作是一个整体,可以把这个整体平均分成若干数,所以分数单位也不相同。(学生一分钟时间记忆)

六、课堂小结

今天我们学习了分数的意义,知道了一个物体或一些物体可以看作单位1,把这个整体分成若干份,这样的一份或者几份可以用分数来表示。一个整体可以用自然数1来表示,通常把它叫做单位“1”。(学生记忆并板书)

七、当堂训练

1、课本63面练习十一第1、2、3题。(必做题)

2、有三个小盒里面装有小棒,我从第一个小盒中拿出一根小棒,这一根小棒是这个整体的五分之一,我从第一个小盒中拿出二根小棒,这二根小棒是这个整体的五分之一,我从第一个小盒中拿出三根小棒,这三根小棒是这个整体的五分之一。你能猜出每个盒子里面原来有几根小棒吗?那你能不能说一说这三个五分之一有什么相同点和不同点吗?(思考题)

八、板书设计

分数的意义

一个物体或一些物体可以看作单位1,把这个整体分成若干份,这样的一份或者几份可以用分数来表示。

一个整体可以用自然数1来表示,通常把它叫做单位“1”。

《分数的意义》教学反思

本课教学的重点就是分数的意义。考虑到如果让我自己概括分数的意义,概念中“一份”我也会把它纳入到“几份”中去,让学生自主、完整地概括出这一概念几乎不可能。因此我主要是引导学生回顾前面各个分数的产生,使学生在回顾的过程中感受、理解、提炼出分数意义的模型,结合教师的板书补充,逐步形成分数的意义。而对于分数单位的教学,我是在分数的意义教学之后,让学生通过看书,再通过尝试回答,去理解。在多次回答“它的分数单位是多少?它里面有几个这样的分数单位?”之后,学生势必会有一些发现,再请学生概括出分数单位、分数单位的个数与分数分子、分母的关系,使学生在数学技能方面得到发展。

在设计练习时,我着重围绕本课重点既分数意义的理解进行安排,既安排了完成书本上的习题,也设计了一道综合性、生活化、渗透数学思想的习题。首先是让学生在具体的实际生活问题中理解把哪个量看作“单位1”,深化对分数意义的理解;
其次是使学生感受到同一个分数,“单位1”的量变化,所对应的数量也随之变化。并引导学生通过观察,感受到“单位1”的量的变化是如何影响分数所对应的数量的变化的。二是发展学生数感,培养学生的估计能力,其实也渗透深化学生对分数意义的理解。三是渗透数学思想,极限的思想。引导学生在现实的问题情景中,通过想象,体会到“日取其半,万世不竭”。学生数感的发展需要专项的训练,但更需要教师课堂教学进行长期的、适时地渗透进行,数学思想、数学文化更是如此。这不是一蹴可就的,而是一个长期的、潜移默化的过程。

但是回顾整课的"教学,还是存有一些遗憾。比如一些细节上处理还是不够好。在新授部分将许多物品作为整体呈现时还是需要用一些符号使学生深入感受到将它们看作一个整体,在学生看书过程中缺少必要的引导和指导。还有就是练习的量还是较少,学生在技能层面发展不够。

分数小学教学设计 第16篇

教学目标

1、使学生知道分数的产生,理解分数的意义,特别是理解单位“1”、分子、分母的意义,学会用分数描述生活中的事情。

2、培养学生动手操能力和概括能力。

3、让学生在轻松和谐的课堂教学氛围中主动参与,在操作体验中,激发学习兴趣,树立学好数学的信心。

教学重点:

分数的意义,正确认识单位“1”。

教学难点:

单位“1”概念的建立。

教学准备:

教具:课件、图片,电子白板。

学法指导:

引导学生 自学、带着问题学,培养良好的学习习惯。

教学过程

活动一:
复习导入

1、提问:

(1)把2个苹果平均分给2个小朋友,每人分的几个??

(2)把1个苹果平均分给2个小朋友,每人分的几个?(每人分得这个苹果的 2/ 1)?

活动二:

1、关于分数,你知道了分数哪些知识?分数是怎样产生的呢?能说出几个简单的分数吗?

2、关于分数,你还想知道什么?

设计意图:注意新旧知识的衔接,为建立单位“1”打下基础。

活动三:

探究单位“1”是一个物体或一个计量单位的分数

初步得出:把一个物体或一个计量单位平均分成若干份,表示这样的一份或几份,我们可以用分数来表示。

活动四:探究单位“1”是许多物体的一个整体。

引导学生说出:原来是把一个物体或一个计量单位看作一个整体,现在是把许多物体看作一个整体。

练习:举例,然后说出各个例子中的单位“1”。

设计意图:把单位“1”从一个物体过渡到一个整体,初步建立单位“1”概念。

小结:单位“1”可以指一个物体、一个计量单位,还可以指由许多物体组成的一个整体。能说说我们生活中哪些物体可以看作单位“1”?

设计意图:进一步认识单位“1”,使学生理解单位“1”,不仅可以是一个物体,许多物体也可以看成单位“1”。为充分理解分数的意义基础。

练习

活动五:归纳分数的意义

⑴我们学到这里大家能说说什么叫做分数?(同学试着说说)

⑵读读书上是怎么说的?

⑶课件出示分数的意义:让学生再读一遍。

认识分数的各部分名称

同桌同学说分数,说名称。

活动六:巩固应用, 拓展练习,思考题

课件出示

(五)总结全课

通过这节课的学习,同学们知道了什么?

板书设计:

分数的产生和意义

分数的产生? 生活的需要

分数的意义

1/4? 3/4

把一个整体平均分成若干份,这样的一份或几份的数都可以用分数表示。

分数小学教学设计 第17篇

教学内容:

九年义务教育六年制小学数学教科书人教版五年级下册第60-62页。

教学目标:

1、在具体的情境中进一步认识分数,发展数感,体会数学与生活的密切联系。

2、理解有关单位“1”的数学内涵,进而揭示分数的意义,认识分数单位的含义。

教学重点:

分数意义的归纳与单位“1”的抽象。

教学难点:

把多个物体组成的一个整体看作单位“1”。

课前谈话:

同学们猜一猜,在课堂上,老师最喜欢什么样的学生?(用心听讲的学生;
踊跃发言,并且敢于表达和坚持自己的观点;
)老师会不会批评回答错误的学生?(孩子是什么?错误中成长的天使。)

教学过程:

一、创设情境,引入新课

老师想考考同学们,看看同学们能不能从现实生活中发现数学问题,敢接受老师的挑战吗?同学们一定要认真听啊。星期天,亮亮妈妈去逛商场了,商场里的沙发坐垫正在打折,亮亮妈妈想买一套。但是,她遇到麻烦了,她不知道家里沙发的长和宽呀。亮亮妈妈就给家里打了个电话:亮亮,量一量家里沙发的长和宽,好吗?遗憾的是亮亮找不到的尺子。亮亮呀可聪明了,他想了一个绝妙的办法。他说,妈妈,家里还有一条丝巾,和你戴的丝巾一模一样,我用丝巾量好吗?用丝巾量,这个办法很好啊。亮亮开始量沙发了:沙发的长正好是两个丝巾的长,沙发的宽么,哦,沙发的宽比丝巾的长度短许多,亮亮把丝巾对折后再量,沙发的宽比对折后的丝巾短一些,亮亮把丝巾折了三次后再量,这时沙发的宽正好是三折后丝巾的长。

同学们,老师的问题来了:

1、“把丝巾折了三次”实际上就是把一条丝巾怎么分成了3份?(把丝巾平均分成三份或三等分)

2、把丝巾平均分成三份,每份是多少?()三等分(生:)。沙发的宽就是丝巾长的。

师:是一个什么样的数?

生:分数

师:关于分数,同学们在三年级的时候已经学过。你们还知道哪些有关分数的知识?

生说。

大家知道的挺多的,有关分数的知识,还有很多很多,今天我们继续学习分数。板书课题:分数的意义)

二、导学导探,建构分数

1、整体感知

①请同学们思考,你们能结合下面的图形说说1/4的含义吗?

师:让学生说说4个图形的意义。(提示:能结合下面这一句话来说一说1/4表示的意思吗?)

注意:把圆形和长方形的面积、香蕉的个数、一条线段、8个面包都可以看做一个整体。

教师总结并板书1/4的意义:上面的这些物体我们都可以把它看做一个整体,即把一个整体平均分成4份,表示这样一份的数,就是1/4。

板书:把一个整体平均分成4份,表示这样一份的数。

②师:请看第5副图,老师有点纳闷,2个面包和1/4是什么关系?

生回答后小结:2个面包占8个面包这个整体的1/4;
8个面包的1/4是2个面包;
把8个面包平均分成4份,每份是2个面包,每份也可以用1/4来表示,

③师:还有点纳闷,(手指着)这5个图形的形状、大小、数量都不一样,为什么都能用1/4来表示呢?

师总结:上面的这些物体都可以看做一个整体,都平均分成了4份,都取出了其中的一份,所以都可以用1/4来表示。

④一个整体还可以用什么来表示呢?下面老师告诉同学们一个知识点,谁来念一遍:一个整体可以用自然数1来表示,通常把它叫做单位“1”。

强调:一个圆形的面积、长方形的面积、香蕉的个数、一条线段、8个面包都可以用单位“1”来表示。这里的1不仅可以表示一个物体,还可以表示多个物体,它的含义非常特殊,所以1的上面需加上双引号。

谁来举一个单位“1”的例子。

改写板书:1/4的意义该怎么修改呢:把一个整体改为单位“1”,即把单位“1”平均分成4份,表示这样一份的数就是1/4。

2、抽象概括

①1/4的意义明白了,谁来说说5/7的意义(把4和1擦掉)

②师:出示5/(),让学生说把单位“1”平均分成……(这里有几种不同的声音出现),表示这样5份的数。

师:平均分成的份数不确定,可以用“若干份”来概括。板书若干份,师生完整说一遍含义。

③师:出示()/(),谁又能说说它表示的意义。

生:把单位“1”平均分成若干份,表示这样若干份的数。

师:同学们好聪明呀,懂得类推,但是用若干份代替这不确定的数,好像与前面有重复的感觉,换个词?

生:几份

老师把它换成:一份或几份并板书:把单位“1”平均分成若干份,表示这样一份或几份的数,叫做分数。

老师今天讲的内容在书上60-62页,但是还有三个问题老师没有讲到,希望同学们认真看书,自己研究明白。(问1/2的分数单位)

出示自学提纲

板书:5/6分数单位1/6

三、拓展延伸

今天。我们学习了分数的意义,你们学得怎么样,老师要检验一下:

1、图中的涂色部分表示几分之几?(糖块)(挑几个说分数的意义和分数单位)

2、书上的题

3、判断

4、写出合适的分数:

这道题是我们以后学习的内容,同学们回答得这么好,很了不起。

四、自我小结,升华认识

师:今天我们进一步学习了分数的意义,分数的意义是:把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。马上下课了,老师想说一句含有一个分数的话:今天我们班有3/4的学生发言积极,有4/5的学生语言流畅,有5/6的学生思维敏捷,如果老师有机会再来上课的话,老师希望100%的学生都是好样的。中午回家给爸爸妈妈说一句话,让这一句话里含有一个分数。

分数小学教学设计 第18篇

教材分析:

这部分内容是求一个数是另一个数的百分之几的应用题的发展。它是在求比一个数多(少)几分之几的.分数应用题的基础上进行教学的。这种题实际上还是求一个数是另一个数的百分之几的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答比一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高百分数应用题的解题能力。

学情分析:

用线段图表示题目的数量关系有助于学生理解题意,分析数量关系。再通过想帮助学生弄清,要求实际造林比原计划多百分之几,就是求多造林的公顷数是原计划造林公顷数的百分之几。然后鼓励学生寻找不同的解决方法,这样既开拓了学生的解题思路,又可以发展学生的思维能力。不断的改变题中的问题,使学生进一步加深对这类百分数应用题的认识,看到题里条件和问题之间的内在联系,同时也促进了学生逻辑思维能力的发展。

教学目标:

1、认识求比一个数多(少)百分之几的应用题的结构特点。

2、理解和掌握这类应用题的数量关系、解题思路和解题方法。

教学重点:掌握求比一个数多(少)百分之几的应用题的解题方法,正确解答。

教学难点:理解这类应用题的数量关系、解题思路和解题方法。

教具准备:

小黑板

教学过程:

第一课时

活动(一)铺垫复习。

1、说出下面各题中表示单位1的量,并列出数量关系式。

(1)男生人数占总人数的百分之几?

(2)故事书的本数相当于连环画本数的百分之几?

(3)实际产量是计划产量的百分之几?

(4)水稻播种的公顷数是小麦的百分之几?

2、只列式,不计算。

(1)140吨是60吨的百分之几?

(2)260吨是40吨的百分之几?

3、一个乡去年原计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?

活动(二)相互合作,探究问题:

1、根据复习题第3题的题意,除了可以求实际造林是原计划的百分之几?还可以提什么问题?出示例3。一个乡去年原计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?

2、讨论:

(1)这道题与上面的复习题相比较,相同的地方是什么?不同的地方是什么?

(2)根据线段图,这道题应该怎样思考、解答?

列式解答:

(14-12)12=2120.167=16.7%

答:实际造林比原计划多16.7%。

3、学生阅读课本,对照例3的解答,质疑问难。

4、想一想,例3还有其他解法吗?

可能出现1412-100%116.7%-100%=16.7%

5、思考:如果例3中的问题改成:原计划造林比实际造林少百分之几?该怎样解答?

(例3中的问题改成原计划造林比实际造林少百分之几后,单位1的量发生变化。改编后的应用题应把实际造林的公顷数(14公顷)看做单位1的量,要比较的量是原计划造林比实际造林少的公顷数。)

解答过程:

(14-12)14或者:1-1214

=2141-0.857

0.143=1-85.7%

=14.3%=14.3%

答:原计划造林比实际造林少14.3%。

活动(三)、巩固练习

1、分析下列问题,指出所求问题是什么量与什么量比,把哪一个量看做单位1。

(1)今年比去年增产百分之几?

(2)男生比女生少百分之几?

(3)一种商品,降价了百分之几?

(4)客车速度比货车慢百分之几?

(5)货车速度比客车快百分之几?

2、判断题。(对的在括号里打,错的打。)

(1)客车每秒行的路程比货车多1.2米,那么,货车每秒行的路程比客车少1.2米。

(2)客车每秒行的路程比货车多10%,那么,货车每秒行的路程比客车少10%。

分数小学教学设计 第19篇

教学内容:

教学目标:

1.知识目标:使学生理解百分数的意义,能够正确地读、写百分数,运用百分数解决简单的实际问题。

2.能力目标:使学生经历收集、分析、处理信息的过程,培养学生分析、比较、抽象、概括的能力和与人交流合作的能力,促进个性化的教学理解与表达,初步建立自我评价与反思意识。

3.情感目标:使学生感受百分数在实际生活中的广泛应用,增强学好数学的信心,同时结合相关信息对学生进行思想品德教育,渗透数学应用思想。

教学重难点:使学生理解百分数的意义,理解百分数与分数的联系和区别。

教学准备:小黑板、学生课前收集含有百分数的信息、多媒体。

教学过程:

一、创设问题情境,感受百分数的应用价值(揭示课题)。

1、谈话导入

2、出示例题:

姓名李明张华吴军

投中次数157235

投篮次数2010050

提问:从上面这张表格中你了解到什么信息?

提问:从表中呈现的信息来看,冠军将属于谁?

学生汇报结果

3、小结:像这些分母是100的分数还可以表示成75%、72%、70%这样的形式。这样的数就是我们今天要学习的百分数。(板书课题:百分数)

二、感悟、体验生活中的百分数。

(一)理解百分数的意义

1、尝试理解每个百分数的具体意义。

2、概括百分数的意义。

(1)师生交流概括:百分数表示的是一个数是另一个数的百分之几

(2)师生交流深化百分数的概念

提问:这句话提到几个量?

小结:这2个量表示一种倍比关系,所以百分数也叫百分率或百分比。

(3)生活中百分数意义的练习

①理解:羊毛衣成份:山羊绒10%,羊毛85%,锦纶5%,每个百分数的意义。

②四人小组内交流,说说自己收集的百分数表示什么意思?(组内交流,教师巡视)

(二)引导学生尝试百分数的读与写

(1)学生读例题中的百分数,教师指正。特别强调100%的读法。

比较:百分数与分数的读法的区别

(2)教师写百分数,学生观察,并小结出写百分数的步骤

写百分数时先写分子,再写百分号(%),百分号先写左上角的圆圈,再写斜线,最后写右下角的圆圈,两个圆圈写的要比分子小。

(3)用百分数进行练习

比赛:写10个自己最喜欢的百分数,看谁写得又快又好。

10秒后让学生汇报完成的任务(我完成了任务的()%),并提问:为什么?

特别强调指刚好完成任务与超任务的情况。

三、巩固、拓展与应用。

(一)书本练习p99/试一试,

(二)选百分数

1、出示练习

2、思考:百分号前面可以是哪些数呢?

3、学生思考后汇报结果。

4、提问:最小的百分数是1%吗?最大的百分数是100%吗?巩固概念,辨析异同。

(二)1、思考:百分数和我们学过的哪种数比较相似?(和分数比较相似),那么百分数和分数完全一样吗?

2、下面哪几个分数可以写成百分数的形式,哪几个不能?说说为什么?

出示练习题:我校占地面积公顷,其中教学楼的占地面积约占()%,足球场的占地面积约()公顷,约占总面积的()%,

3、学生独立思考,汇报结果。

4、出示百分数与分数的区别和联系。

区别:分数不仅可以表示两个数之间比的关系,还可以表示成某个具体数量,可以带上单位名称;
百分数只能表示两个数之间比的关系,后面没有单位名称。

联系:百分数是一种特殊的分数。

(三)判断对错。

(三)成语猜百分数

四、全课小结

老师希望同学们用1%的灵感+99%的汗水去换得100%的成功,祝愿我们班100%的同学都成为人才。

分数小学教学设计 第20篇

教学内容:

义务教育六年制小学数学第十册分数的意义。

教学目标:

1、使学生知道分数的产生和其它数学知识一样是由人类的生产和生活实际中产生的。

2、使学生理解分数的意义和单位“1”的含义及分子、分母的含义。

3、培养学生形象思维,抽象概括能力和初步的逻辑思维能力。

4、使学生受到初步的辨证唯物主义观念的启蒙教育。

教学重点与难点:

让学生理解分数的意义是本节课的重点,讲清单位“1”的含义是本节课的难点。

教具准备:

电脑软件一套。

学具准备:

每人一张正方形纸片、每组一个信封里面装有一张圆形、长方形纸片,4个苹果图片,6个玩具熊猫图片。

教学过程:

课前组织教学

今天我们和许多小动物一起去参加小猴的生日聚会高兴吗?你们看小猴准备了许多好吃的、好玩的东西(电脑显示画面)请同学们观察一下都有什么?它还想测测同学们的智力利用课堂上所学的知识帮它分一分、算一算能做到吗?(上课)

一、分数的产生

在日常生活中,人们在进行测量和计算的时候,有时不能得到整数得结果,例如,用一个计量单位“米”测量黑板的长度(屏幕显示)量了3米后,剩下的一段不够1米了,还能用整数表示吗?又如,老师只有一个苹果要平均分给两个小朋友,每个小朋友分得多少个/还能用整数表示吗?这就需要用新的数,谁知道用什么数来表示?

板书:分数

对于分数同学们并不陌生,在三年级的时候我们已经初步认识过谁能说几个分数(指名说老师板书),谁还记得分数各部分的名称是什么?

到底什么样的数叫分数呢?分子、分母各表示什么意思呢?这节课我们就来进一步学习分数的意义,板书:的意义

二、分数的意义

1、把小猴准备的一部分礼物装在信封里,倒出来看一看都有什么?下面小猴要利用这些东西测测同学们的智力,看哪一个小组表现的好?听要求小组同学研究想办法表示出每种东西的。小组研究汇报。

2、根据刚才分的过程,把这些物体归两类,为什么这样分?

根据学生的回答板书:一个物体、一个整体(解释整体的含义)。

说明一个物体、一个计量单位或许多物体组成的整体都可以用自然数1来表示,通常叫做单位“1”

上面我们分的这些物体就可以用一句话表示出来谁能说出来?(把单位“1”平均分成两份,每份是它的)

3、请同学们看屏幕,仔细观察回答问题

(1)把一块饼平均分成两份,每份是它的()。

(2)把一张正方形的纸平均分成4份每份是它的(),其余的3份是它的()。

(3)把一条线段平均分成5份,每份是它的()其余的是它的()。

(4)同时显示以上3幅图,让同学们认真观察它们的分法和表示每一部分的分数有什么异同?小组讨论汇报。

4、请同学们拿出准备好的苹果和熊猫图片,平均分看有几种分法,其中的一份用什么数表示,小组讨论汇报,电脑显示平均分的苹果和熊猫图画,让学生按照第一幅图的说法说一说其余的几幅图的意思。

5、电脑同时显示一块饼、一张正方形纸、一条线段、四个苹果、六只熊猫图,提问:刚才我们分了这些物体都是把谁看作单位“1”?谁来说一说什么叫做单位“1”?电脑显示单位“1”的含义。

6、根据刚才所学的知识小组讨论到底什么样的数叫做分数呢?引导学生总结分数的意义,电脑显示分数的意义。

7、根据分数的意义指名说出刚才写的这些分数表示的意义。

8、教学分子、分母的含义:电脑显示分数各部分的名称,指名回答分子、分母各表示什么?写几个分数让学生说出分子、分母所表示的含义。

9、做一做电脑显示。

三、课堂练习:

1、让同学们闯三关,电脑显示三关题。

2、三关闯过了,别忘了还要帮小猴分东西呢,苹果、熊猫已分过,还有西瓜和蛋糕,看小狗分西瓜(电脑显示)学生回答。提问:如果小狗把西瓜平均分成8块,小猴吃了3块,吃了西瓜的几分之几?小兔吃了2块,吃了几分之几?还剩下西瓜的几分之几?

分蛋糕,蛋糕上有四朵小花、12支蜡烛,平均分成4份,每份都能用来表示,但是这个所表示的数量一样多吗?为什么?

四、课堂小结:

这节课你学会了什么?

五、板书设计

分数的意义

一个物体

一个计量单位单位“1”2/34/155/11

一个整体

把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

分数小学教学设计 第21篇

教学目标

1、使学生知道分数的产生,理解分数的意义,特别是理解单位“1”、分子、分母的意义,学会用分数描述生活中的事情。

2、培养学生动手操能力和概括能力。

3、让学生在轻松和谐的课堂教学氛围中主动参与,在操作体验中,激发学习兴趣,树立学好数学的信心。

教学重点:

分数的意义,正确认识单位“1”。

教学难点:

单位“1”概念的建立。

教学准备:

教具:课件、图片,电子白板。

学法指导:

引导学生自学、带着问题学,培养良好的学习习惯。

教学过程

活动一:复习导入

提问:

(1)把2个苹果平均分给2个小朋友,每人分的几个??

(2)把1个苹果平均分给2个小朋友,每人分的几个?(每人分得这个苹果的2/1)?

活动二:

1、关于分数,你知道了分数哪些知识?分数是怎样产生的呢?能说出几个简单的分数吗?

2、关于分数,你还想知道什么?

设计意图:注意新旧知识的衔接,为建立单位“1”打下基础。

活动三:

探究单位“1”是一个物体或一个计量单位的分数

初步得出:把一个物体或一个计量单位平均分成若干份,表示这样的一份或几份,我们可以用分数来表示。

活动四:探究单位“1”是许多物体的一个整体。

引导学生说出:原来是把一个物体或一个计量单位看作一个整体,现在是把许多物体看作一个整体。

练习:举例,然后说出各个例子中的单位“1”。

设计意图:把单位“1”从一个物体过渡到一个整体,初步建立单位“1”概念。

小结:单位“1”可以指一个物体、一个计量单位,还可以指由许多物体组成的一个整体。能说说我们生活中哪些物体可以看作单位“1”?

设计意图:进一步认识单位“1”,使学生理解单位“1”,不仅可以是一个物体,许多物体也可以看成单位“1”。为充分理解分数的意义基础。

练习

活动五:归纳分数的意义

⑴我们学到这里大家能说说什么叫做分数?(同学试着说说)

⑵读读书上是怎么说的?

⑶课件出示分数的意义:让学生再读一遍。

认识分数的各部分名称

同桌同学说分数,说名称。

活动六:巩固应用?拓展练习?思考题?

课件出示

(五)总结全课

通过这节课的学习,同学们知道了什么?

板书设计:

分数的产生和意义

分数的产生?生活的需要

分数的意义

1/4?3/4

把一个整体平均分成若干份,这样的一份或几份的数都可以用分数表示。

分数小学教学设计 第22篇

教学内容:课本练习四的第6~10题。

教学目的:

1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。

2.培养分析能力,发展学生思维。

教学重点:正确分析数量关系,找准单位1

教学难点:依题意正确画图教学过程:

一、复习。

1.先说出下列各算式表示的意义,再口算出得数。

2.指出下面每组中的两个量,应把谁看作单位1。

(1)梨的筐数是苹果的。

(2)梨的筐数的和苹果的筐数相等。

(3)白羊只数的等于黑羊的只数。

(4)白羊的只数相当于黑羊的。

3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

(1)有40筐苹果,梨的筐数是苹果的。()?

(2)梨的筐数是和苹果的筐数相等,有40筐。()?

(3)有40只白羊,白羊的只数的等于黑羊的只数。()?

(4)白羊的只数相当于黑羊的,有40只黑羊。()?

二、新授。

1.出示例3。

小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?

(1)指名读题,说也已知条件和问题。

(2)怎样用线段图表示已知条件和问题。

先画一条线段,表示谁储蓄的钱数?为什么?

学生回答后,教师画线段图。

再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。

然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

教师画:

(2)分析数量关系。

引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。

(3)确定每一步的算法,列式计算。

①求小华储蓄的钱数怎样想?

引导学生回答:根据小华储蓄的钱数是小亮的

把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:

(元)

②求小新储蓄的钱数怎样想?

引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:

(元)

把上面的分上步算式列成综合算式,该怎样列?

(元)

(4)检验,写答语。答:小新储蓄了10元。

2.做一做。

让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。

3.小结。

从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?

学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。

三.巩固练习。

完成练习四的第6、7题。

四、全课小结。

这节课我们共同研究了什么?

解答这类分数乘法两步应用题关键是什么?

五、布置作业。

完成练习四的第8~10题。

教学反馈:

分数小学教学设计 第23篇

教学内容:

教科书第117—118页,例4和“做一做”,练习二十五的第1—4题。

教学目标:

1.整理和复习与“一个数比另一个数多(或少)几分之几”有关的分数应用题,进一步理解这些稍复杂的分数应用题之间的内在联系,掌握它们的解答方法。

2.在计算过程中进一步培养学生良好的观察、分析、判断能力。

3.体会数学的实用价值,提高同学们对学习数学的兴趣。

教学重点:

稍复杂的分数应用题的数量关系。

教学难点:

稍复杂的分数应用题之间的内在联系。

教具准备:

教师准备两块小黑板,一块写好口算练习题,另一块写好教科书第117页例4及下面讨论的问题。

教学过程:

一、口算练习

教师出示小黑板上的口算练习题。

二、教学例4

1.复习“求一个数比另一个数多(或少)几分之几”的应用题。

“下面我们来复习分数应用题。”(出示小黑板上的例4。)

例4 学校举办的美术展览中,有50幅水彩画,80幅蜡笔画,蜡笔画比水彩画多几分之几?水彩画比蜡笔画少几分之几?

“请同学们先自己解答这道应用题,解答完以后,想一想这道题中的两个问题有什么相同之处,有什么不同之处?”

(80 - 50)÷50 =

(80 - 50)÷80 =

答:蜡笔画比水彩画多:水彩画比蜡笔画少。

解答完以后,教师让学生说明这道题中两个问题的相同点和不同点。

小结:我们在解答分数应用题时,一定要认真分析数量关系,要弄清以哪个数量作为标准,也就是说:要弄清以哪个数量作为单位“1”。

2.复习“已知一个数比另一个数多(或少)几分之几和其中的一个数,求另一个数”的应用题。

“接着例4的这两个问题,我们再来讨论下面的两个问题。”(出示小黑板上其余的问题。)

(1)根据“蜡笔画比水彩画多”这个条件

如果已知水彩画有50幅,怎样求蜡笔画有多少幅?

如果已知蜡笔画有80幅,怎样求水彩画有多少幅?

(2)根据“水彩画比蜡笔画少”这个条件

如果已知水彩画有50幅,怎样求蜡笔画有多少幅?

如果已知蜡笔画有80幅,怎样求水彩画有多少幅?

分析的时候,教师要引导学生弄清什么时候用乘法计算,什么时候列方程解答或用除法计算。一般可以概括成:当我们知道了作为单位l的数量,要求它的几分之几时,就用乘法计算(根据乘法的意义1);
反之,如果是求作为单位“1”的数量时,列方程解答,或者是用除法计算(根据除法的意义)就比较方便。

3.复习百分数应用题。

“如果我们把以上各题中的分数都改为百分数,解答的方法一样吗?”(一样)

(例如。把例4的问题改为求“蜡笔画比水彩画多百分之几?水彩画比蜡笔画少百分之几?”解答的结果是百分数。)“百分数应用题与分数应用题实质是一样的,只不过是把比较两个数量关系的分数用百分数来表示。”

1.做教科书第117页“做一做”的第l题。

教师巡视,做完后集体订正。订正时,可以请一名学生说一说合格率与废品率的.关系,以加深学生对这些实际问题的理解。

2.做教科书第117页“做一做”的第2题。

谈谈这节课你的收获?

练习二十五的第1—4题。

推荐访问:教学设计 分数 必备 分数小学教学设计必备23篇 分数小学教学设计(必备23篇) 小学分数的教学设计