2023年度教学设计矩形汇编(范文推荐)

时间:2023-09-07 12:45:02 来源:网友投稿

教学设计矩形第1篇一.学生情况分析学生已经学习了平行四边形的性质和判定,也学习了一种特殊的平行四边形菱形的性质和判定,对于类似的问题有一定的学习精力、经验和感受,这将更有利于学生对本节课的学习。二.教下面是小编为大家整理的教学设计矩形汇编,供大家参考。

教学设计矩形汇编

教学设计矩形 第1篇

一.学生情况分析

学生已经学习了平行四边形的性质和判定,也学习了一种特殊的平行四边形菱形的性质和判定,对于类似的问题有一定的学习精力、经验和感受,这将更有利于学生对本节课的学习。

二.教学任务分析

教学目标:

知识目标:

1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。

2.掌握正方形的性质定理1和性质定理2。

3.正确运用正方形的性质解题。

能力目标:

1.通过四边形的从属关系渗透集合思想。

2.在直观操作活动和简单的说理过程中,发展学生初步的合情推理能力、主动探究习惯,逐步掌握说理的基本方法。

情感与价值观

1.通过理解四种四边形内在联系,培养学生辩证观点

教学重点:正方形的性质的应用.

教学难点:正方形的性质的应用.

三、教学过程设计

课前准备

教具准备: 一个活动的平行四边形木框、白纸、剪刀.

学生用具:白纸、剪刀

教学过程设计分成四分环节:

第一环节:巧设情境问题,引入课题

第二环节:讲授新课

第三环节:新课小结

第四环节:布置作业

第一环节 巧设情境问题,引入课题

进入正题,提出本节课的研究主题正方形

第二环节 讲授新课

主要环节

(1)呈现两种通过不同途径得到正方形的过程,给正方形下定义

(2)讨论正方形的性质

(3)通过练习加强对正方形性质的理解

(4)寻找平行四边形、矩形、菱形、正方形之间的相互关系。

(5)寻找正方形的判定方法

目的:

1. 正方形是特殊的平行四边形,也是特殊的矩形和菱形,因此想得到一个正方形,可以在矩形的基础上强化边的条件得到,也可以在菱形的基础上强化角的条件得到。于是在课上呈现这两种变化,为后面寻求平行四边形、矩形、菱形、正方形的关系打下基础。

2. 由于采用了两种正方形形成的方式,因此正方形的性质和判定方法都可以从中挖掘和发现。

大致教学过程

呈现一个平行四边形变成正方形的全过程.(演示)

由于平行四边形具有不稳定性,所以先把平行四边形木框的一个角变为直角,再移动一条短边,截成有一组邻边相等,此时平行四边形变成了一个正方形.

这个变化过程,可用如下图表示

由此可知:正方形是一组邻边相等的矩形.即:一组邻边相等的矩形叫做正方形.

这个平行四边形木框还可以这样变化:先移动一条短边,截成有一组邻边相等的平行四边形,再把一个角变成直角,此时的平行四边形也变成了正方形.

这个变化过程,也可用图表示

你能根据上面的变化过程,给正方形下定义吗?

一组邻边相等的平行四边形是菱形.正方形是一个角为直角的菱形,所以可以说:有一个角是直角的菱形叫做正方形.

由此可知:正方形是特殊的矩形,即是邻边相等的矩形,也是特殊的菱形,即是有一个角是直角的菱形.

因为正方形是平行四边形、菱形、矩形,所以它的性质是它们的综合,不仅有平行四边形的所有性质,也有矩形和菱形的特殊性质,即:正方形具有平行四边形、菱形、矩形的一切性质。

正方形的`性质:

边:对边平行、四边相等

角:四个角都是直角

对角线:对角线相等,互相垂直平分,每条对角线平分一组对角。

正方形是轴对称图形吗?如是,它有几条对称轴?

正方形是轴对称图形,它有四条对称轴,即:两条对角线,两组对边的中垂线。

例题

[例1]如图,四边形ABCD是正方形,两条对角线相交于点O,求AOB,OAB的度数。

分析:本题是正方形的性质的直接应用.正方形的性质很多,要恰当运用,本题主要用到正方形的对角线的性质,即正方形的轴对称性.

解:正方形ABCD是菱形,对角线AC,BD一定互相垂直,所以AOB=90.正方形ABCD是矩形,又是菱形,所以:BAD=90且对角线AC平分BAD,因此:OAB=45

拿出准备好的剪刀、白纸来做一做

将一张长方形纸对折两次,然后剪下一个角,打开,怎样剪才能剪出一个正方形?(学生动手折叠,想,剪切)

只要保证剪口线与折痕成45角即可.因为正方形的两条对角线把它分成四个全等的等腰直角三角形,把折痕作对角线,这时只需剪一个等腰直角三角形,打开即是正方形.

正方形是平行四边形、矩形、又是菱形,那么它们四者之间有何关系呢?

正方形、矩形、菱形及平行四边形四者之间有什么关系呢?

它们的包含关系如图:

此图给出了正方形的判别条件,即怎样判定一个平行四边形是正方形?

先判定一个四边形是平行四边形,再判定这个平行四边形是矩形,然后再判定这个矩形是菱形;
或者先判定一个四边形是菱形,再判定这个菱形是矩形.

由于判定平行四边形、矩形、菱形的方法各异,所给出的条件不一样,所以判定一个四边形是不是正方形的具体条件相应可作变化,在应用时要仔细辨别后才可以作出判断。

第三环节 课堂练习

教材 随堂练习1,2

第四环节 课时小结

正方形的定义:一组邻边相等的矩形.

正方形的性质与平行四边形、矩形、菱形的性质可比较如下:(出示小黑板)

第五环节 课后作业

课本习题4.7 1,2,3

四.教学设计反思

在教材中,并没有明确的给出正方形的判定定理。那么教师在课堂上应该帮助学生理清思路,使他们明确判定的方法。

为了实现这个目标,在本节课的开始,教师就采取了两种方式呈现正方形的形成过程,在直观上帮助学生认识了正方形与矩形、正方形与菱形之间的关系;
在讲解正方形性质的过程中又再次强化了这种认识。通过层层铺垫,让学生明确矩形+邻边相等就是正方形,菱形+一个直角就是正方形,如何判定图形是矩形或是菱形,前面已经学习过,因此关于正方形的判定是需要一个条件一个条件“叠加”完成的。

教学设计矩形 第2篇

一、说教材

《矩形的判定》是人教版教科书《数学》八年级(下)第19章第二节的内容,本课为第2课时。矩形是生活中常见的图形,学习矩形的判定方法是对前面所学的全等三角形和平行四边形性质的回顾与延伸,也是为后续特殊平行四边形的判定方法奠定基础,起着承上起下的作用,本节课对培养学生的探索精神,动手能力,应用意识都有有很好的作用。

二、说目标

1.知识与技能

在对矩形性质认识的的基础上,探索并掌握矩形的判别方法;

规范推理的书写格式;

应用矩形定义、判定等知识,解决简单的实际问题。

2.过程与方法

通过矩形的判定定理猜想,操作验证,逻辑推理,体现数学研究和发现的过程,学会数学思考的方法。

3.情感、态度与价值观

能积极参加数学学习活动,能体验数学活动充满着探索,培养逆向思维的能力、并从中获得成功的体验,充满对数学学习的好奇心和求知欲。

三、说重点难点

1.重点:矩形的判定。

2.难点:矩形的判定及性质的综合应用。

四、说教学过程

判定定理都是以“定义”为基础推导出来的。因此本节课要从复习矩形定义下手,得到矩形的判定方法,引出课题。除了通过定义来判定一个四边形是矩形外,在探究判定定理时要让学生沿着这样的思路进行探究:矩形是在平行四边形的基础上添加有一个角是90度,那么还有别的添加方式吗?让学生探究:在平行四边形的边上添加条件是否可以可以成为矩形呢?同学么探究,发现在边上添加不出来条件使之成为矩形,那么学生自然会想到在对角线上添加条件。这样就猜想出对角线相等的平行四边形是矩形。然后同学们以组为单位对判定进行证明。这样既培养了学生对问题的猜想又培养了学生分析问题、解决问题的能力,又培养了学生合作学习的精神。所以在教学的过程中向学生提供充分从事数学活动的时间,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、培养能力、获得经验,鼓励学生主动参与、合作学习。同时加强对学生逻辑推理能力的培养。证明题的推理过程对于学生来说大部分学生还是心里明白,但书写时又不知道该先说那一步。因此在教学中我着重培养这方面,培养学生如何推理使证明题言之有序、条理清楚。

在例题的配备上我出了一道既能复习距形的性质又能检查判定的席题。这样新旧知识

本课主要学习方式是学生在自主探索和合作交流的过程中,使同学们真正理解和掌握基本的数学知识与技能、培养能力。树立学生学习数学的信心,让学生在学习活动中获得成功的喜悦,从而激发学生学习数学的兴趣。让学生充分经历知识形成的全过程。

教学设计矩形 第3篇

教学目标:

1.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

2.通过矩形判定的教学渗 透矛盾可以互相转化的唯物辩证法思想

教法设计:

观察、启发、总结、提高,类比探讨,讨 论分析,启 发式.

教学重点:

矩形的判定.

教学难点:

矩形的 判定及性质的综合应用.

教具学具准备:

教具(一个活动的平行四边形)

教学步骤:

一.复习提问:

1.什么叫做平行四边形?什么叫做矩形?

2.矩形有哪些性质?

3.矩形与平行四边形有什么共同之处?有什么不同之处?

二.引入新课

设问:

1.矩形的判定.

2.矩形是有一个角是直角的平行四 边形,在判定一个四边形是不是矩 形 ,首先看这个四边形是不是平行四边 形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这 体现了定义作用的双重性、性质和判定).除此之外,还有其它 几种判定矩形的方法,下面就来研究这 些方法.

方法1:有三个角是直角的四边形是矩形.(并让学生写出推理过程。)

矩形判定方法2:对角钱相等的平行四边形是矩形.(分析判定方法2和学生 一道写出证明过程。)

归纳矩形判定方法(由学生小 结):

(1)一个角是直角的平行四边形.

(2)对角线相等的平行四边形.

(3)有三个角是直角的四边形.

2 .矩形判定方法的实际应用

除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.

3.矩形知识的综合应用。(让学生思考,然后师生共同完成)

例:已知 的对角线 , 相交于

,△ 是等边三角形, ,求这个平行

四边形的面积(图2).

分析解题思路:(1)先判定 为矩形.(2)求 出 △ 的直角边 的长.(3)计算 .

三.小结:

(1)矩形的判定方法l、2都是有两个条件:①是平行四边形,②有一个角是直角或对角线 相等.判定方法3的两个条件是:①是四边形,②有三个直 角.

矩形的判定方法有哪些?

一个角是直角的平行四边形

对角线相等的平行四边形-是矩形。

有三个角是直角的四边形

(2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.

补充例题

例1:已知:O是矩形A BCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD 上的点,AE=BF=CG=DH,

求证:四边形EFGH为矩形

分析:利用对角线互相平分且相等的四边形是矩形可以证明

证明:∵ABCD为矩形

AC=BD

AC、BD互相平分于O

AO=BO=CO=DO

∵AE=BF=CG=DH

EO=FO=GO=HO

又HF=EG

EFGH为矩形

例2:判断

(1)两条对 角线相等四边形是矩形()

(2)两条对角线相等且互相平分的四边形是矩形()

(3)有一个角是 直角的四边形是矩形( )

(4)在矩形内部没有和四个顶点距离相等的点()

分析及解答:

(1)如图(1)四边形ABC D中,AC=BD,但ABCD不为矩形,

(2)对角线互相平分的四边形即平行四边形,对角线相等的平行四边形为矩形

(3)如图(2),四边形ABCD中,B=90,但ABCD不为矩形

教学设计矩形 第4篇

一、教材分析(说教材):

1、教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;
另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。

2、教学目标:

1、通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。

2、通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。

3、使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。

4、教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的证明以及应用

下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:

二、教学策略(说教法):

1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。

2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。

三、教学过程

环节一:

创设情境、导入新课

通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)

回顾:

1、矩形的定义:有一个角是直角的平行四边形叫矩形

2、矩形的性质:对边:对边平行且相等。对角:四个角相等,都是直角。对角线:互相平分且相等。

3、平行四边形的性质:

平行四边形的性质

平行四边形判定

平行四边形两组对边分别相等

平行四边形两组对边分别平行

两组对边分别平行(或相等)的四边形是平行四边形

平行四边形一组对边平行且相等

平行四边形对角线互相平分

一组对边平行且相等的四边形是平行四边形

对角线互相平分的四边形是平行四边形

平行四边形两组对角分别相等

两组对角分别相等的四边形是平行四边形

环节二:尝试发现,探索新知:活动一:学生分成学习小组,限定仅用手中量角器尝试判定课前准备好的四边形纸板是否为矩形纸板,并说明理由。(此问题的解决以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并适当给予点拨。)活动结束,由小组代表汇报交流结果,并可适当板书进行推证、讲解。在此过程中,全体同学可互相补充、互相评价,培养学生的语言表达能力、推理能力。

活动二:学生分成学习小组,限定仅用直尺尝试判定课前准备好的平行四边形纸板是否为矩形纸板,并说明理由。(此问题的解决仍以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的判定定理一,得出矩形的判定定理二。)通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦。

定理一、定理二得出后,总结矩形的三种判定方法,并对题设进行比较、区分,使学生进一步明确定理应用的条件。(学生比较,归纳。)

环节三:应用辨析,巩固定理

总结:矩形判定方法1有一个角是直角的平行四边形是矩形矩形判定方法2有三个角是直角的四边形是矩形。

矩形判定方法3对角线相等的平行四边形是矩形。为了帮助学生巩固定理,应用定理,练习如下:

一、判断题:1、四个角都相等的四边形是矩形2、对角线相等的四边形是矩形。3、对角线互相平分且相等的四边形是矩形。4、一组对角互补的平行四边形是矩形。

二、填空题:

1、若四边形ABCD的对角线AC、BD相等,且互相平分于O,则四边形ABCD是 形,若∠AOB=60,那么AB:AC= ,若AB=4cm,BC= cm,矩形ABCD的面积为 。

2、两条平行线被第三条直线所截,两组同旁内角的平分线相交所成的四边形是 形。习题设置原则及解决方法说明:

判断题的设计加强学生对所学定理的理解和掌握,使学生能将给出的条件转化为应用定理所需的条件,辨析判定定理的题设,以便更好地应用定理。填空题第一题是对教材例2的改编,第二题是对教材习题的改编,这两个问题的解决分别应用所学定理,使学生能够学习致用。这两道题的解决方法是先采用独立完成形式,有困难的学生可以求助老师或同学,学生互助完成,派学生代表板书讲解。

环节四:开放训练,发散思维

变式训练

如图,△ABC中,点O是AC边上的一个动点,

过点O作直线MN∥BC,设MN交∠BCA的

平分线于点E,交∠BCA的外角平分线于点F。

(1)求证:EO=EF

(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。

变式训练的设置,旨在发散学生的思维,使不同层次的学生都能有所收获,而移动、旋转等问题也是近年中考的热点。学生思考、讨论完成,教师适当点拨,加以讲解。

环节五:反思小结,体验收获.今天你学到了什么?谈谈你的收获。再现知识,教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。

环节六:布置作业,反馈回授通过作业反馈对所学知识的掌握效果,并进一步巩固定理,应用定理。

以上是我对本节课的理解,不足之处,请各位评委、老师指正。谢谢大家!

教学设计矩形 第5篇

教材分析:

《画矩形》是江苏科技出版社《小学信息技术》(上册)的内容。学生通过前两课的学习,应该已经能够熟练使用“椭圆”工具了,因此本课对于学生来说应该是较容易掌握的。教材的第一、二部分主要是介绍使用“矩形”和“圆角矩形”工具画车身和车窗,因为有前面两课的知识的铺垫,学生应该比较容易掌握。

对于如何画出正方形和圆角正方形,可以通知知识的迁移来解决,这样不但复习了画正圆的方法,而且解决了问题。

教材的第三部分,画车窗是对椭圆工具的复习。

在实际的教学过程中,学生可能使用先画出图形,再用“用颜色填充”工具进行填充的方法来画大卡车,就是完全可以的,教师应加以肯定。

综上分析,我们发现本课知识点较易,学生掌握应该不是问题,在教学中教师应该安排足够的练习让学生进行实际的操作。

学情分析:

尽管“矩形”和“圆角矩形”是本课新介绍的两种工具,但是由于学习通过前两节课已经熟练掌握了“椭圆”工具,本课的教学,可以采用学生自主探究的方法进行,教师只需作少许概括总结即可。由于学生个体的差异,可能根据课堂实际情况,让掌握得比较好的同学帮助掌握得比较慢的同学。

教学目标:

1、学习“矩形”、“圆角矩形”等工具的使用方法。

2、让学生能运用矩形和圆组合出一些基本图形。

3、通过画大卡车,让学生感受一个整体图形的完成过程。

4、让学生了解图形组合的奥秘,从而培养学生的创造力。

课时安排:1课时。

教学重点:“矩形”、“圆角矩形”工具的使用方法。

教学难点:让学生能运用矩形和圆组合出一些基本图形。

设计思路:

情景创设,激活课堂

听,什么声音?哈哈,是我们可爱的多多,乘着大卡车来到了我们的教室。

先请大家观察一下:多多乘坐的这辆大卡车是由哪些图形组成的?

指名生汇报:这辆大卡车是由圆、椭圆、长方形、圆角长方形组成的。

在数学里面我们把长方形和正方形都叫做矩形,今天我们就来一起学习画矩形。

出示课题:画矩形

设计意图:书本教材的文字对学生来讲是枯燥的。就小学三四年级学生心理特点而言,平淡的指导式教学形式更是最枯燥的学习方式。那么我们对教材的开发,首先重点就是要通过各种各样的方式将学习内容趣味化。我结合了我校的形象大使“多多”这一卡通形象。将整个画图教学取名叫“多多带你学画画”。这次,“多多”奇怪地出场,立刻吸引了所有同学的关注的目光。仔细观察所出现在大屏幕上开车的结构组成。

提出任务,共同探究

会画长方形和圆角长方形的同学举手。现在我们来比赛,分别画一个长方形和一个圆角长方形,并涂上自己喜欢的颜色,看谁画得又快又好。

学生动手操作,奖励画得快、好的学生。

指名学生上台演示:画一个长方形和一个圆角长方形。

师:是不是只要会画这四个基本图形,我们就能很快地画出多多乘坐的这辆大卡车呢?答案是……

出示图片:

多多要是坐着这样的车,让人肯定很担心。我们一起来做个小小汽车修理师,找找下面几辆大卡车中哪些部件需要“修理”。

指名学生演示画第4幅图中的轮子,提醒学生两个车轮要画得同样大小,引导学生一边使用Shift键,一边注意观察状态栏内信息。

把要修理的部件小组里交流一下,然后说说看,怎样可以避免这样的错误。

设计意图:

小学课程设置里有艺术课,在信息技术课上学画画,它的目的肯定与艺术课的教学目标的制定有很大差异的。它在小学信息技术教学的设置,是为前面的操作系统知识教学提供一个缓冲、消化过程,更为重要的是为了让学生在学习画图的过程中,娴熟运用鼠标,进一步熟悉windows窗口程序的各种常规操作。但只要掌握这些技巧,就足够了吗?这样的看法肯定是片面的。信息技术教学的目标,不仅仅是技巧的教学,更为重要的学生信息素养的培养。技巧掌握了,我们不能说他的信息素养就高了,这里有个“运用”的过程。如何思维缜密地将这技巧用于精确地表达自己所想传递的信息,这也尤为重要。所以,就有了这“小小汽车修理师”这一环节。

在这一环节的设计过程中,也曾为此环节是放在学生自己画卡车之前还是之后有过思考。最终决定是放在之前。固然实践出真知,但先听进去的话或先获得的印象往往在头脑中会占有主导地位。严谨的思维习惯的培养,还因正面引导为主。

交流。

师:好,现在我们自己来画出这辆大卡车。

在操作过程中如遇困难,可以从书中找解决办法,也可寻求会画的同学的帮助。

指名学生上台演示操作,学生给予评价、教师评价。

技巧巩固,实践提高

好了,大卡车造好了。任务完成。那么多多乘着大卡车去做什么呢?原来,它要搬家。要搬哪些东西呢?

生答:公文包、小床、书橱、冰箱。

师:小组内说一说这些物品分别是由哪些图形组成的。

学生小组内交流,集体汇报。

师:请大家选择两幅自己喜欢的物品,动手画一画。

学生练习,教师巡视,发现问题及时解决。

展示学生作品,学生进行评价。

设计意图:这个环节是教材后安排的实践园。也是大部分课后都有的实践题。很多学生在技巧掌握后,对于巩固提高并不是很感兴趣。在前一阶段的自己探究过程中,学生的兴奋点已经渐渐消退,如何进一步激发其探究的兴趣。这时,“多多”的再次使用,猜猜坐着卡车的它来做什么,又起到了激发学生兴趣的作用。

个性创新,拓展练习

请小朋友们充分发挥自己的想象力,把画上再添加一些你认为应该有的东西。

学生先说说自己准备添加的物品。

学生1:我准备在公文包下面添加画两个轮子。

学生2:我准备在小床上添加画枕头和被子。

学生3:我准备在书橱上添加画一个闹钟。

学生4:我准备在冰箱上添加画一个花瓶。

学生动手操作。

展示学生作品,学生给予评价,之后老师评价,及时给予鼓励和赞扬。

师生共同评选出今天的优秀作品,给予表扬,颁给“艺术多多”章。

设计意图:学生作品展示,让学生自评、互评,然后教师给予肯定性和鼓励性的评价,充分体现教师的主导作用和学生的主体地位。学生间的互相比较、品评,能够激发他们的学习欲望,有利于学生正确看待自己的长处和弱点。“艺术多多”奖章的颁发,是对学生学习的肯定,必将给予其进一步学好本门课的信心。而对于那些暂时落后的学生也起到了激励作用。

推荐访问:矩形 教学设计 汇编 教学设计矩形汇编 教学设计矩形(汇编5篇) 矩形的教学设计