比例应用教学设计第1篇教学内容教科书第54页例3,练习十二5,6,7题。教学目标1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。2.通过运用正比例解决实际问题的活动,让学生体验数学的应下面是小编为大家整理的比例应用教学设计热门6篇,供大家参考。
比例应用教学设计 第1篇
教学内容
教科书第54页例3,练习十二5,6,7题。
教学目标
1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。
2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。
3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。
教学重、难点
运用正比例知识解决简单的实际问题。
教学准备
教具:多媒体课件。
学具:作业本,数学书。
教学过程
一、复习引入
1.判断下面各题中的两种量是不是成正比例?为什么?
(1)飞机飞行的速度一定,飞行的时间和航程。
(2)梯形的上底和下底不变,梯形的面积和高。
(3)一个加数一定,和与另一个加数。
(4)如果y=3x,y和x。
2.揭示课题
教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。
二、合作交流,探索新知
1.用课件出示例3
教师:这幅图告诉我们一个什么事情?需要解决什么问题?
教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。
2.全班交流解答方法
指导学生思考出:
(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。
(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。
(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。
3.尝试用正比例知识解答
如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;
如果学生没想到用正比例知识解答,教师可作如下引导。
教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:
(1)题中有哪两种相关联的量?
(2)题中什么量是不变的?一定的?
(3)题中这两种相关联的量是什么关系?
引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。
随学生的回答,教师可同步板书:
教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?
引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。
教师:同学们会计算吗?把这个比例式计算出来。
学生解答。
教师:解答得对不对呢?你准备怎样验算?
学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。
三、课堂活动
1.出示教科书第49页的例1图和补充条件
竹竿长(m)26…
影子长(m)39…
教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?
教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?
学生独立思考解答,讨论交流。
2.小结方法
教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)
(1)设所求问题为x。
(2)判断题中的两个相关联的量是否成正比例关系。
(3)列出比例式。
(4)解比例,验算,写答语。
四、练习应用
完成练习十二的5,6,7题。
五、课堂小结
这节课我们学习了什么知识?你有什么收获?
比例应用教学设计 第2篇
教学内容
第23~24页例1、例2以及相应的“做一做”,练习五第1~4题、
教学目的
1、让学生掌握用比例解应用题的方法、
2、让学生感受生活中的数学,体验数学的应用价值,培养学生运用所学知识解决实际问题的能力、
教学重难点
利用已学的正比例的意义,通过自己探索,掌握解答正比例应用题的方法。
教学过程
一、复习
1、判断下面各题中的两个量成什么比例关系?
1)速度一定,路程和时间(正)
2)三角形的面积一定,底和高(反)
3)一个为0的自然数与它的倒数(反)
4)Y=3XY与X(正)
5)每块砖的面积一定,砖的块数和总面积(正)
二、引入
一辆汽车从甲地开往乙地行驶路程和时间表:
路程(千米)70140350……
时间(小时)125……
(1)观察提问:
1)表中相关的量是哪两种量,汽车行的路程和时间成什么比例?
为什么?师从表中圈出14035025
师:将其中一个数当作未知数能编一道就用题吗?
2)学生试编
如学生编题时没有“照这样速度”或“照这样计算”,师提醒:读题的人怎样知道速度一定?
3)生汇报所编之题,(选其中一题)师出示例1
师:你们自编的题目会用以前学过的方法解答吗:
学生试做;
汇报:(师板书)
生:归一140÷2×5
倍比140÷(5÷2)
分数140÷2/5或140×5/2
方程140÷2=X÷5
师:大家想出了这么多合理的解答方法,真能干,我们已经学过了比例的意义、解比例的知识,能不能利用比例的这些知识来解答这道题呢?
今天我们就探讨如何用比例解答应用题(板书课题)
三、新知
1、学生分组讨论,尝试用所学的比例知识来解答应用题。
2、讨论后,请两组学生上来写写他们的列式。
解:设两地之间的距离有X千米
140/2=X/5
师:请讲讲你们的解题思路
学生:根据“照这样计算”可以看出速度一定,也就是路程/时间=速度(一定)既比值一定。所以,路程和时间成正比,根据比例的意义列出等式。
师:140/2表示什么?X/5表示什么?
3、学生总结一下解比例应用题的步骤:
1)读题,找出条件和问题。
2)找准变量和定量,判断两种相关联的量成什么比例。
3)设未知数。
4)根据比例意义列出等式并解答。
齐读解题步骤,师:这几步中,最关键的是哪步?
4、出示刚才学生编的另一题:
一辆汽车从甲地开往乙地2小时行驶140千米,已知公路长350千米,需要行驶多少小时。用比例解答该怎样解答。
师:这道题的定量变了吗?路程和时间成什么比例关系?
生试独立完成。集体订正。请学生讲讲解题思路。
四、巩固练习:
1、补充条件,使它成为一道完整的应用题,并用比例解答。
一台织布机织布,4小时织布80千米,照这样式计算一共可以织多少千米?
学生1:补充“3小时”后,全体学生试做。
学生2:补充“再织3小时”学生试做。
请不同做法的学生板书,并说说解题思路。
生1:间接设生2:直接设
解设3小时织布X米解设一共可织布X米
80/4=X/4+380/4=X/3
X=60X=140
60+80=140
比例应用教学设计 第3篇
一、 教材分析
《正反比例的应用》本课选自青岛版数学六年级下册第三单元第四信息窗,本节课是在学生学习了比以及正反比例的意义的基础上进行教学的,也是今后学习数学和其他学科知识的重要基础。通过对教材的分析和学生的研究我确定了本节课的教学目标及教学重难点。
教学目标:
1、 能正确判断问题中数量之间的比例关系。
2、 会用比例知识解决简单的实际问题。
3、 培养分析、判断和推理能力,感受数学的价值。
重点:
会用比例知识解决问题。
难点:
正确判断数量间的比例关系并列出比例式。
二、 学情分析
学生在以前的学习中,已经接触过很多数量关系和比的知识,基础掌握还可以,而且具备一定的自主探索能力,但是语言表达不够规范。
三、 教法
采取"引导—合作—自主—探究"的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。
激励评价法:"评价的目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。"我在学生提问题和解决问题中发现有独特见解的,都给予激励的评价,增强学生学习数学的自信心。
四、 学法
[ 新课程不但倡导教师教学方式的转变,而且着力于学生学习方式的转变。培养学生的学习能力首先要让学生掌握学习数学的方法。在这节课中,学生的学习方法主要有:
合作交流法:在获得新知的过程中,学生充分利用各自的资源,开展小组合作,在小组中分工明确,提高了学习效率,使学生的智力得到最佳的开发,树立的主人翁的意识。
反思法:方法注重反思,学生才能学得牢。在课将结束,学生对自己的获得的知识和学习方法进行反思,总结经验,取长补短。
五、 教学过程
1、复习导入
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间。
(2)总价一定,每件物品的价格和所买的数量。
(3)小朋友的年龄与身高。
(4)正方体每一个面的面积和正方体的表面积。
(5)被减数一定,减数和差。
谈话引入:我们今天运用正反比例的知识来解决实际问题。
意图:简单的复习为本节课学习做了铺垫,提高了教学效率。
2、出示学习目标,能用解比例的方法正确解答比较简单的应用题。
意图:带着目标去学习,让学生把握学习方向,而且可以让学生做好自我检测,课后有目的的复习巩固。
3、出示信息窗的情景,你能提出什么问题?
意图:培养学生提取信息能力以及提出问题能力。
4、让学生先独立解答,然后小组交流解题方法,找同学到前面板演解题过程。在这个过程中,教师做好引导,问题中出现的数量存在什么样的关系,指导用解比例的方法解决这个问题。
意图:通过这个过程可以强化学生对正比例意义的理解,培养学生分析解决问题的能力。
5、在经过思考掌握方法之后,直接引导学生用解比例的方法解决第二个红点问题,找代表汇报解题方法与过程。
意图:培养分析、判断能力、解决问题能力以及语言表达能力。
6、总结方法。
让学生自己总结用比例相关知识解决应用题的方法。
意图:培养学生分析概括能力。
7、达标检测。
意图:学生从课堂中所学的知识,如果不及时巩固、复习,与实践没有结合起来,就会稍纵即逝,因此设计合理的有效地练习是必须的。
8、课堂小结。
通过这堂课的学习,你有什么收获?你有什么易错点?
意图:这个环节给了学生充分参与课堂的机会,可以培养学习总结概括能力,也会让学生自我评价学习效果。也利于学生掌握学生学习情况。
五、 板书设计
(略)
比例应用教学设计 第4篇
教学目标
1、复习成正比例和反比例关系的量的意义。
2、掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、 反比例关系的应用题。
3、进一步培养同学们分析、推理和判断等思维能力。
教学重点和难点
判断两种相关联的量成什么比例;
确定解答应用题的方法。
教学准备 多媒体课件
教学过程设计
今天我们上一节复习课。(板书课题:正反比例应用题)出示目标学生齐读。通过这节课的学习,进一步理解和掌握正反比例意义及应用题的解题规律。
一、复习概念
1、什么叫成正比例的量?它的关系式是什么?
2、什么叫成反比例的量?它的关系式是什么?
3、正反比例它们有什么相同和不同的地方?
二、复习数量关系
1、判断下面每题里相关联的两种量是不是成比例?如果成比例,成什么比例?
(1)工作效率一定,工作时间和工作总量。( )
(2)每块砖的面积一定,砖的块数和铺地面积。( )
(3)挖一条水渠,参加的人数和所需要的时间。( )
(4)从甲地到乙地所需的时间和所行走的速度。( )
(5)时间一定,速度和距离。( )
2、选择题:
(1)如果a = c÷b ,那么当 c 一定时,a和b 两种量( )。
① 成正比例② 成反比例③ 不成比例
(2)步测一段距离,每步的平均长度和步数( )。
① 成正比例② 成反比例③ 不成比例
(3)比的后项一定,比的前项和比值()。
① 成正比例② 成反比例③ 不成比例
(4)C= πd 中,如果c一定,π和 d( )。
①成正比例 ② 成反比例③ 不成比例
(5)化肥厂有一批煤,每天用15吨,可用40天,如果这批煤要用60天,每 天只能用几吨?下面等式( )对。
①40:15= 60:
② 40=15×60 ③ 60=15×40
三、复习简单应用题
例1 一台抽水机5小时抽水40立方米,照 这样计算,9小时可抽水多少立方米?
A、题中涉及哪三种量?其中哪两种是相关联的量?
B、哪一种量是一定的?你是怎么知道的?
C、题中“照这样计算”就是说 ( )一定,那么( )和( )成( )比例关系。学生独立解答。
2、总结 正 、反比例解比例应用题要抓的四个环节
3、判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
①、一台机床5小时加工40个零件,照这样计算,8小时加工64个。
②、一列火车从甲地到乙地,每小时行90千米,要行4小时;
每小时行80千米,要行X小时。
③、一辆汽车3小时行180千米,照这样的速度,5小时可行300千米。
④、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?
⑤、小敏买3枝铅笔花了1、5元,小聪买同样的铅笔5枝,要付给营业员多少钱?
⑥、甲种铅笔每支0、25元,乙种铅笔每支0、20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?
四、 巩固练习
1、用一批纸装订练习本,如果每本30页可装订500本,如果每本比原来多10页,可装订多少本?
解:设可装订本。
(30+10)=500×30
4 0=15000
=15000
=375
答:可装订375本。
2、比一比,想一想,每一组题中有什么不同, 你会列式吗?
(1)修路队要修一条公路,计划每天修60米,8天可以修完。实际前25天就修了200米,照这样计算,修完这条路实际需要多少天?
(2)修路队计划30天修路3750米,实际5天就修了750米,照这样几天就能完成?
五、拓展延伸
用正反两种比例解答:
一辆汽车原计划每小时行80千米,从甲地到乙地要4、5小时。实际0、4小时行驶了36千米。照这样的速度,行完全程实际需要几小时?
六、全课总结
解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量等于两种相关联的量相除,则成正比例;
定量等于两种相关联的量相乘,则成反比例。
七、板书设计
正反比例应用题
=K(一定) X×Y=K(一定)
X和Y成正比例关系。
X和Y成反比例关系。
正y 、反比例解比例应用题要抓的四个环节
第一、分析:可分四步。
第一步:确定什么量是一定的。
第二步:相依变化的量成什么比例。
第三步:找准相对应的两个量的数。
第四步:解方程(根据比例的基本性质)
第二、设未知数为X,注意写明计量单位。
第三、根据正反比例的意义列出方程。
第四、检验并答题。
比例应用教学设计 第5篇
教学目标
1.复习成正比例和反比例关系的量的意义。
2.掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、 反比例关系的应用题。
3.进一步培养同学们分析、推理和判断等思维能力。
教学重点和难点
1、 判断两种相关联的量成什么比例;
确定解答应用题的方法。
教学准备 多媒体课件
教学过程设计
今天我们上一节复习课。(板书课题:正反比例应用题)出示目标学生齐读。通过这节课的学习,进一步理解和掌握正反比例意义及应用题的解题规律。
一、复习概念
1、什么叫成正比例的量?它的关系式是什么?
2、什么叫成反比例的量?它的关系式是什么?
3、正反比例它们有什么相同和不同的地方?
二、复习数量关系
1.判断下面每题里相关联的两种量是不是成比例?如果成比例,成
什么比例?
1.工作效率一定,工作时间和工作总量。( )
2.每块砖的面积一定,砖的块数和铺地面积。( )
3.挖一条水渠,参加的人数和所需要的时间。( )
4.从甲地到乙地所需的时间和所行走的速度。( )
5.时间一定,速度和距离。( )
2.选择题:
1.如果a = c÷b ,那么当 c 一定时,a和b 两种量( )。
① 成正比例② 成反比例③ 不成比例
2.步测一段距离,每步的平均长度和步数( )。
① 成正比例② 成反比例③ 不成比例
3.比的后项一定,比的前项和比值()。
① 成正比例② 成反比例③ 不成比例
4.C= πd 中,如果c一定,π和 d( )。
①成正比例 ② 成反比例③ 不成比例
5.化肥厂有一批煤,每天用15吨,可用40天,如果这批煤要用60天,每 天只能用几吨?下面等式( )对。
?40:15= 60: ② 40=15×60 ③ 60=15×40
三、复习简单应用题
例1 一台抽水机5小时抽水40立方米,照 这样计算,9小时可抽水多少立方米?
A、题中涉及哪三种量?其中哪两种是相关联的量?
B、哪一种量是一定的?你是怎么知道的?
C、题中“照这样计算”就是说 ( )一定,那么( )和( )成( )比例关系。学生独立解答。
2、总结 正 、反比例解比例应用题要抓的四个环节
3、判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
①、一台机床5小时加工40个零件,照这样计算,8小时加工64个。
②、一列火车从甲地到乙地,每小时行90千米,要行4小时;
每小时行80千米,要行X小时。
③、一辆汽车3小时行180千米,照这样的速度,5小时可行300千米。
④、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?
⑤、小敏买3枝铅笔花了1.5元,小聪买同样的铅笔5枝,要付给营业员多少钱?
⑥、甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?
四、 巩固练习
1、用一批纸装订练习本,如果每本30页可装订500本,如果每本比原来多10页,可装订多少本?
解:设可装订本。
(30+10)=500×30
4 0=15000
=15000
=375
答:可装订375本。
2、比一比,想一想,每一组题中有什么不同, 你会列式吗?
(1)修路队要修一条公路,计划每天修60米,8天可以修完。实际前25天就修了200米,照这样计算,修完这条路实际需要多少天?
(2)修路队计划30天修路3750米,实际5天就修了750米,照这样几天就能完成?
五、拓展延伸
用正反两种比例解答:
1、一辆汽车原计划每小时行80千米,从甲地到乙地要4.5小时。实际0.4小时行驶了36千米。照这样的速度,行完全程实际需要几小时?
六、全课总结
解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量等于两种相关联的量相除,则成正比例;
定量等于两种相关联的量相乘,则成反比例。
七、板书设计
正反比例应用题
=K(一定) X×Y=K(一定)
X和Y成正比例关系。
X和Y成反比例关系。
正y 、反比例解比例应用题要抓的四个环节
第一、分析:可分四步。
第一步:确定什么量是一定的。
第二步:相依变化的量成什么比例。
第三步:找准相对应的两个量的数。
第四步:解方程(根据比例的基本性质)
第二、设未知数为X,注意写明计量单位。
第三、根据正反比例的意义列出方程。
第四、检验并答题。
比例应用教学设计 第6篇
教学要求:
1、使学生加深理解比与除法、分数的关系,能用不同的表述方法说明比、分数和倍数关系的含义。
2、使学生进一步学会应用不同的知识解答比和比例的应用题,培养学生灵活、合理地解答应用题的能力。
教学过程:
一、揭示课题
1、口算。
让学生口算练习二十二第3题。
2、引入课题。
我们已经复习了比和比例的知识,知道了比和除法、分数之间的联系,根据这样的联系,对于比和比例应用题,可以用不同的方法来解答。这节课,我们来复习用不同的方法解答比和比例应用题。(板书课题)通过复习,要学会用不同的知识解答同一道应用题,提高灵活、合理地解答应用题的能力。
二、复习比与除法、分数的关系
1、提问:比与除法、分数有什么关系?
2、出示:甲数与乙数的比是1:4。提问:根据甲数与乙数的比是1:4,你能用分数、倍数关系表示甲数与乙数的关系吗?
3、做练习二十二第4题。
小黑板出示。指名一人板演,其余学生做在课本上。集体订正,选择两题让学生说说是怎样想的。
三、用不同方法解答应用题
l,说明:对于一个比或一个分数、倍数,我们都可以从不同的角度来理解数量之间的关系。这样,就可以用不同的知识来解答关于比和比例方面的应用题。
2、做“练一练”第1题。
让学生读题,再说一说80克盐这个数量与比的哪一部分是对应的。提问:盐和水的重量比1:15可以怎样理解?提问:按照1:15这三种角度的理解,题里已知盐重80克,你能用三种不同的方法解答吗?请同学们做在练习本上,如果有困难,再看看书上是怎样想的。(老师巡视辅导)指名学生口答算式,老师板书三种解法。提问:第一种解法为什么用80×15可以求出加水的重量?这样做的数量关系是怎样的?第二种解法按怎样的数量关系列等式的?为什么用方程解答?第三种解法是按怎样的方法解答的?列比例的依据是什么?提问:这三种不同的解法,都是根据哪个条件来找数量之间的关系的?指出:这三种解法虽然不同,但都是根据盐和水的重量比1:15这个条件,从倍数、分数和比的意义这三个不同的角度来找出盐和水的重量之间的关系,得出相应的三种解法,求出了问题的结果。
3、做“练—练”第2题。
学生读题。指名板演,其余学生做在练习本上。集体订正,让学生说说各是怎样想的。注意学生中的不同解法。
4、做练习二十二第5题。
让学生默读题目,找一找三道题的相同点和不同点。谁来说一说,每题里元数与份数是怎样对应的?指名三人板演,其余学生做在练习本上,要求学生每道题用两种方法列出算式,不要计算结果。集体订正,让学生说说每种解法是怎样想的。追问:这里都是把哪个条件经过转化后找出不同解法的?
5、讨论练习二十二第6题。
请大家比较一下,这两题有什么相同和不同的地方?合唱组人数是舞蹈组的2倍可以怎样理解?两题里的人数对应的份数各是怎样的?
6、做练习二十二第7题。
让学生比较相同点和不同点。提问:第(1)题男衬衫和女衬衫件数的比是几比几?第(2)题男衬衫和女衬衫件数的比是几比几?这里两道题请同学们都用两种方法解答。指名两人板演,其余学生在练习本上列出算式。集体订正。提问:用分数知识解答这两道题列出的方程为什么不一样?各是按怎样的数量关系列方程的?用比的知识解答这两道题时列出的式子有什么不一样?为什么会不一样?还有没有不同的解法?指出:解答应用题要根据题意,弄清题里的数量关系,根据数量关系列式解答。
四、课堂小结
提问:比和比例应用题,或者倍数、分数应用题,用不同知识解答时,主要把哪个条件从不同角度理解的?(用比、分数或倍数表示两种量关系的条件)指出:由于表示两个数量关系的条件可以从不同角度理解,所以,解题时就可以根据每次理解这个条件的知识,用相应的方法灵活、合理地解答。
五、布置作业
课堂作业:练习二十二第6、8题。
家庭作业:“练一练”第3题。