2023年《分数基本性质》教学设计9篇(2023年)

时间:2023-09-19 18:20:02 来源:网友投稿

下面是小编为大家整理的2023年《分数基本性质》教学设计9篇(2023年),供大家参考。

2023年《分数基本性质》教学设计9篇(2023年)

作为一名人民教师,我们要在课堂教学中快速成长,借助教学反思可以快速提升我们的教学能力,我们该怎么去写教学反思呢?这次为您整理了9篇《《分数的基本性质》教学设计》,希望能为您的思路提供一些参考。

分数的基本性质数学教案 篇一

教学目的

1.使学生理解和掌握分数的基本性质.

2.培养学生观察、思考、动手操作和自学能力.

教学过程

一、导入新课.

故事引入:中秋节,妈妈买了一个大西瓜,分给哥哥这个西瓜的 ,(板书: ).

分给组组这个西瓜的 ,(板书: ).分给弟弟这个西瓜的 ,(板书: ).哥哥、姐姐、弟弟三个人,他们谁吃的西瓜多呢?(学生答案不一)

到底谁回答得对呢?上完这节课你们一定能得到准确的答案.

二、新课.

1.实际操作列等式证实两组分数,每组分数大小相等.

(1)教师讲解:请同学们拿出三个大小相等的圆来,分别用阴影部分表示每个圆的

.(板书: )

(2)教师提问:比较一下阴影部分的大小,结果怎样?

阴影部分相等,说明这三个分数怎样?

(随着学生回答老师将三个分数用“=”连接)

(3)教师拿出画着三条数轴的小黑板,讲:谁能在三条数轴上标出 ?

(4)教师提问:这三个分数在数轴上所表示的长度怎样?这又说明了什么?

(随着学生回答老师在三个分数间用“=”连接)

2.初步概括分数基本性质.

(1)观察两个等式,每个等式的三个分数什么变了?什么没变?

(2)同学们从左到右观察第一个等式,想一下,这三个分数的分子、分母怎样变化才保证了分数的大小不变.

板书:

(3)谁能用一句话把这个变化规律叙述出来?

板书:分数的分子、分母都乘上同一个数,分数大小不变.

(4)从左到右观察第二个等式,这三个分数的分子、分母发生了怎样的变化,才保证了分数大小不变呢?

板书:

(5)问:谁能用一句话把这个变化规律叙述出来?

谁能用一句话把这两个变化规律叙述出来?

(板书:或除以)

3.完整分数基本性质.

填空:

教师追问:第三题( )里可以填多少个数?第4题呢?

为什么3、4题( )里可以填无数个数?

( )里填任何数都行吗?哪个数不行?(板书:零除外)

这里为什么必须“零除外”?

教师小结:我们总结的分数的这个变化规律就是“分数的基本性质.

(板书课题:分数基本性质)

4.深入理解分数基本性质.

教师提问:分数的基本性质里哪几个词比较重要?

为什么“都”和“相同”很重要?

为什么“分数大小不变”也很重要?

为什么“零除外”也很重要?

三、课堂练习.

1.用直线把相等的分数连接起来.

2.把下列分数按要求分类.

和 相等的分数:

和 相等的分数:

3.判断下列各题的对错,并说明理由.

4.填空并说出理由.

5.集体练习.

四、照应课前谈话.

问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?

板书:

五、课堂小结.

这节课你有什么收获?

六、布置作业.

1.指出下面每组中的两个分数是相等的还是不相等的.

2.在下面的括号里填上适当的数.

《分数的基本性质》教学反思 篇二

《分数的基本性质》在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一。我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。对这部分内容我是这样设计教学的:

一、成功之处:

1、 学习分数的基本性质我利用了商不变的性质进行正迁移,所以我在开课伊始板书: " 分数与除法”有什么关系 ? “根据除法和分数的关系,将这个除法算式写成分数形式,“根据商不变的性质我们可以把一个除法算式变成很多除法算式,那一个分数能不能也变出很多分数呢?”帮助学生意识到商不变规律与新知识的学习具有定的联系,为新知识的学习奠定基础。

2、在本课的学习中,为充分体现学生的主体地位,使之经历学习探究的全过程。我创设了小组合作学习提示,让学生首先猜测分数是否也有与除法同样的性质。接着充分利用直观手段,设计了折纸涂色的操作活动,通过让学生动手操作来发现三个分数之间的相等关系,接着引导学生一起探索这三个分数之间存在的规律,从而把具体的知识条理化,使学生获得具体真切的感受,帮助学生在活动中感悟分数大小相等的算理。归纳得出分数的基本性质,让学生参与学习的全过程,在掌握所学知识的同时获得成功的体验。当总结出规律后找出规律中的关键词“同时”、“相同的数”,再提出为什么这里的相同的数不能为零,并通过商不变性质的性质、分数与除法的关系,使学生全面理解掌握分数的基本性质。在教学中我还注意关注学生的多种思维方式,鼓励学生用自己的语言叙述解决问题的过程,体现了对学生观察能力、动手操作能力、逻辑思维能力和抽象概括能力的培养。

二、不足之处:

1、随着知识点的深入,很多孩子开始呈现课堂吃力现象,小组合作中体现不出自己的认识或者想法,只有听得份,困惑是怎样解决他们的困难,让他们紧跟我们学习的步伐。

2、今后小组合作提示要照顾差生的提高,创造学习数学的兴趣和耐心。

《分数的基本性质》教学反思 篇三

《分数的基本性质》它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的。《分数的基本性质》在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一。我在设计这节课时,大胆利用猜想和验证方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。对这部分内容我是这样设计教学的:

一、迁移引入,沟通新旧知识的联系。

学习分数的基本性质可以利用商不变的性质进行正迁移,所以我在复习环节时出示:124=3 12040=3 1200400=3,问:观察这三道算式,你回忆起以前学过的什么规律?根据除法和分数的关系,猜猜看分数也有这样的规律吗?帮助学生意识到商不变规律与新知识的学习具有定的联系,为新知识的学习奠定基础。

二、用故事情景引入,增强解决问题的现实性。

教学一开始,就以一段故事《三个和尚分饼》引入课题,这样不仅激发了学生的学习兴趣,更调动了学生的求知欲望,充分运用了猜测和情景引入等方式,吸引学生主动参与到对新知识的探究过程中,把抽象的分数基本性质具体化了。然后,我抓住分数基本性质的本质属性,通过让学生动手操作来发现三个分数之间的相等关系,接着引导学生一起探索这三个分数之间存在的规律,从而把具体的知识条理化,归纳得出分数的基本性质,让学生参与学习的全过程,在掌握所学知识的同时获得成功的体验。当总结出规律后再提出为什么这里的相同数不能为零,并通过商不变性质的性质、分数与除法的关系,使学生全面理解掌握分数的基本性质。在教学中我还注意关注学生的多种思维方式,鼓励学生用自己的语言叙述解决问题的过程,体现了对学生观察能力、动手操作能力、逻辑思维能力和抽象概括能力的培养。

三、运用知识,解决实际问题。

先进行基本练习,深化对分数的基本性质认识,通过应用拓展,使学生加深对分数的基本性质的理解,如游戏:老师写一个分数,你能写出和老师相等的分数?你能写几个?写的完吗?在写的时候,你是怎么想的?1/a=7/b(a和b是不为0的自然数),当a=1、2、3、4的时候,b分别=?a和b为什么有怎样的关系?为什么有这样的关系呢?并培养学生运用所学的知识解决实际问题的能力。本节课出现的问题也很多,如在进行分数的基本性质与商不变的规律的沟通联系时,只是对照两句性质进行,没有举出具体的例子,如果能有把这两个规律之间的转化采用举例、填空的形式,能给学生以直观的体验,胜过用语言的描述。

《分数的基本性质》教学反思 篇四

“分数的基本性质”是人教版小学数学五年级下册的内容,它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,对这部分内容我是这样设计教学的:

1、用故事情景引入,用猜测的方式,激发学生的学习兴趣,增强解决问题的现实性。采用学生自己亲自观察、操作,再分析怎样做的方式,把学生推上学习的主体地位,放手让学生自己去解决问题。

2、步步逼近,主动探究。用逐步向学习目标逼近的方式学习数学,在探索规律的过程中,学生不能一次完整地归纳出分数的基本性质,只能用逐步向目标逼近的方式,先引导学生概括出例题的规律,再将这个规律与书上的结论进行比较,通过比较学生可以发现归纳的规律并不精确,然后重点讨论为什么要“0除外”,使学生全面、准确地掌握分数的基本性质。接下来再沟通商不变的规律与分数的基本性质的内在联系,加深学生对分数的基本性质的理解。

3、前后呼应,体验成功。

在探究过程中充分发挥学生学习的主体作用,用实验、说解问题的过程、对比归纳规律等方式,让学生参与学习的全过程,在掌握所学知识的同时获得成功体验。应用拓展时又利用判断等式来巩固知识。学生掌握知识的情况比较理想。

整节课我设计了四个教学环节,猜想与验证,归纳再验证,巩固与应用,拓展与延伸。如从课的开始,就让学生从阿凡堤的笑中进行猜测,其实这三个分数的大小相等。让学生运用自己原有的知识经验进行验证,得出规律后并没有满足,而是继续利用“性质”的应用再次检验结果的正确性。通过学生不断猜想,不断验证,再猜想,验证,学生的兴趣比较高,他们希望能向别人证明自己的猜想,这猜想一旦被别人认可,学生的自信心就会大增,我想,长此以往,学生慢慢就会从“能学习”转化为“会学习了”。这节新授课的设计,目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。

以前我曾经听过也上过几节这样的课,感觉学生都比较容易理解,觉得这知识不难,用不着老师多讲了,也就使整节课显得有点单调,枯燥,基于以上原因,我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。

本节课出现的问题也很多:

首先,在验证、交流环节学生们参与率并不高,好多学生尤其是后进生普遍是无从下手,在交流时也不主动,很多学生还停留在一知半解的状态。

其次,验证的方法也不多。学生们只应用了商不变的性质,分数与除法的关系,以及分子与分母的倍数关系,最直观最重要的用线段与实物来验证的同学很少。由于是时间关系,我没有让学生在这方面有过多的停留,显然,验证得还不够透彻,部分同学还有疑虑。以后如果再上这节课,我想在这个环节上作一些处理。就是让每位学生在自己准备的纸上画一画、折一折、或剪一剪,通过动手操作来验证自己的猜想是否正确,从而培养学生的动手能力,以及观察问题解决问题的能力。

第三,在巩固练习环节上,学生们练习的密度还不够,毕竟回答问题的同学在少数。

这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习,不仅对学生提出了挑战,而且对老师也提出了更大的挑战。因为学生有了更大的思考空间,学习方式是开放的,解决问题的方式是多元的,这就要求教师备课时能站在学生的角度思考,提高教学的预设能力。同时,学生探究的过程曲曲折折,不同的学生会遇到不同的磕磕碰碰,暴露出不同的问题,甚至许多问题教师都难以预料,这些又对教师临场应变、驾驭课堂的能力提出了更高的要求。要求教师能以人为本,根据学生不同情况采取不同的教学方式。譬如,这节课“提出猜想”是非常重要的一环,它确定了研究的方向。可是如前所述,如果有些学生用类比的方法提不出猜想,怎么办?教师可以从另一个角度启发学生。相反,如果学生非常活跃,出现的猜想很多,无法在一节课中一一验证,怎么办?教师可先让学生选择其中一个最重要的猜想进行验证,学会了方法后,再分组各自选择自己喜欢的猜想验证,最后全班交流,提高了时效性。教师要充分信任学生,放手让学生做思维的先行者,不怕走弯路,不怕出问题,因为学生有了问题才更有探索的价值。如果教师善于抓住学生暴露的真实

《分数的基本性质》教学反思 篇五

1、在教学分数的基本性质的感知、理解、提升、归纳、概括方面,我注重对学生数学思维的表达、辨析、质疑的训练,尽量不给学生的数学思维加上框框,让学生展开思维,大胆思考,学生也提出了不少有价值的问题,如:这相同的数能不能包括小数,如果分数的分子和分母同时乘上或除以一个小数,那所得的数还是不是分数呢?为什么要零除外?大小不变能不能说成结果不变呢?等等一系列有价值的问题,并重视引导学生采用举例说明的方法来解决问题。我想这可能也是我这节课比较有收获的一个环节了。能真正地体现自主开放,转变学生的学习方式。

2、在本节课的设计中有两处合作交流:一个是在验证猜想时合作,由于对小组的要求比较复杂,所以我运用了多媒体优势将小组合作要求打在屏幕上,这样学生就有了合作的方向,并且能对合作的效果加以对照,提高合作的有效性。另一个是在发现规律时合作探究,交流沟通。这时由于本班学生的实际,学生基本上处于一种交流的状态,不能说是合作了。有待今后对这个问题进一步努力。

3、有效地处理课堂生成资源当教师个人的设计意图与学生的实际的实际不相符合,而学生表现出来的行为或语言又是有价值的,这时教师该怎么处理,我认为这就是对课堂生成资源的把握问题了。另一个课堂生成点在其中有一个学生运用了商不变的性质来解释了1/4=2/8=4/16的原因,我却忘了将本节课的一个培养学生迁移类推能力的知识点遗漏了,那就是商不变的性质与分数的基本性质有什么联系与区别?这是一个很具有探究交流价值的问题。可惜我在预设与生成的把握方面做得比较欠缺,暴露出的问题也正是今后必须要努力去学习的地方。

4、练习的设计为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习积极性。在练习设计方面,尽量给枯燥的练习赋予丰富多彩的形式,一方面可以集中学生的注意力,另一方面也可以放松学生的心情,让他们在轻松愉快的氛围里学习知识,本案例中设计了:①有探究结束后的分辨是非,②有新课中的尝试性练习,③有游戏活动。较好地把独立思考与合作交流结合起来,学生学得轻松、愉悦。但在学习新知的过程中如何与练

习有效地融合在一起,这也是一个很值得我个人反思的地方

反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。

《分数的基本性质》教学反思 篇六

分数的基本性质是在学生已掌握了商不变的性质之后,并在分数的意义基础上进行学习的,经过观察,合作探究总结出分数的基本性质,为以后学习约分和通分打基础,在教学中我注重“过程与结果的结合”,“合作学习与自主学习”的结合,“创设情境与创新精神”的结合,巧妙地创设问题情境,让学生产生迫不及待地要求获取新知识的情感,再经过拓展外延,从具体事例中抽象出事物的内在规律,这一环节重点在掌握了学生的认识规律基础上,强调知识的来源,让学生自我挖掘规律,掌握数学知识产生的内在规律,激发起学生进取思维的动机。经过小组的合作以及教师的引导,发现规律,总结规律,促进了学生相互帮忙,相互启迪,相互促进,发挥了讨论交流的作用,提高了学生学习的本事。经过有目的的基本练习、巩固练习、综合练习,学生进一步加深了对新知的强化了学生运用新知解决实际问题的本事,使学生构成了必须的技能技巧。

教学一开始,我以唐僧给三个徒弟分饼而引出谁分得多与少,激发学生的学习兴趣,让他们以最大的热情投入到解决生成单上的问题。由于时间有限,我先让学生独立完成生成单,生成单的第一个问题比较简单,是在以前学习的基础上而设置的。经过预习对于第五个问题大部分学生都能总结出来。而中间三个问题是本节课的重点。在学生独立做后我让学生分成大的小组去探讨、去交流生成单的重点三个问题。最终学生在讨论、交流和展示的时候教师在中间加以重点强调,来凸显本节课的教学难点。从而以学生的主体行为实践了整个学习活动。从师生交流活动中体现了对分数的基本性质的在认识,学生的“知识技能”、“过程与方法”、以及“情感态度与价值观”全面获得了大丰收。经过教学过程能够看出,本节课所设计的三单比较全面能突破教学重难点,具有阶梯性,教学过程及环节贴合一案三单的教学,尤其是让学生成为课堂的主人,成为学习的主人,体现出新形势下的教育理念。还有,课堂中对小组评价及个人评价形式新颖,能激发学生学习的欲望,充分保证小组学习的进取、高效和彰显学生的个性。

当然,还存在一些不足。比如,课题太笼统,没有体现出本节课的教学重点。在教学过程中,在重难点的处理上没有对学生重点强调。从这一点上不难看出,在备课的过程中没有吃透教材。还有,数学强调的是学练结合,在本节课对学生没有进行练习。当然,以上的不足我会在以后的实验中努力改善,我相信有同志的帮忙,和领导的支持,我的教学会更加出色。

分数的基本性质数学教案 篇七

教学目标

1.使学生对数的整除的有关概念掌握得更加系统、牢固.

2.进一步弄清各概念之间的联系与区别.

3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.

4.掌握分数、小数的基本性质.

教学重点

通过对主要概念进行整理和复习,深化理解,形成知识网络.

教学难点

弄清概念间的联系和区别,理解易混淆的概念.

教学步骤

一、铺垫孕伏.

教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,

在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)

揭示课题:在数的整除这部分知识中,有这么多的概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.

二、探究新知.

(一)建立知识网络.【演示课件数的整除】

1.思考:哪个概念是最基本的概念?并说一说概念的内容.

反馈练习:

在123=4 48=0.5 20.l=20 3.20.8=4中,被除数能除尽除数的有( )个;被除数能整除除数的有( )个.

教师提问:这四个算式中的"被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?

教师说明:能除尽的不一定都能整除,但能整除的一定能除尽.

2.说出与整除关系最密切的概念,并说一说概念的内容.

反馈练习:下面的说法对不对,为什么?

因为155=3,所以15是倍数,5是约数. ( )

因为4.62=2.3,所以4.6是2的倍数,2是4.6的约数. ( )

明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.

3.教师提问:

由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容.

根据一个数所含约数的个数的不同,还可以得到什么概念?

互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?

互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.

4.讨论互质数与质数之间有什么区别?

互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.

5.教师提问:

如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的什么数?

只有什么数才能做质因数?

什么叫做分解质因数?

只有什么数才能分解质因数?

6.教师提问:

谁还记得,能被2、5、3整除的数各有什么特征?

由一个数能不能被2整除,又可以得到什么概念?

(二)比较方法.

1.练习:求16和24的最大公约数和最小公倍数.

2.思考:求最大公约数和最小公倍数有什么联系和区别?

(三)分数、小数的基本性质.

1.教师提问:

分数的基本性质是什么?

小数的基本性质是什么?

分数的基本性质教学设计 篇八

学习内容分析:

“分数的基本性质”是九年义务教育小学数学北师大版五年级上册第三单元的内容。它是在学生学习了分数的意义、分数大小的比较、商不变的性质、分数与除法的关系的基础上进行的,为以后学习约分、通分做准备。

学习者分析:

学生已掌握了分数的意义和商不变的性质,已具备一定的动手操作的能力和分析、概括能力,能用分数表示图形的阴影部分,已具备一定的合作交流的意识和经验。

教学目标:

1:经历探索分数基本性质的过程,理解分数基本性质;

2:能运用分数基本性质解决简单的实际问题;

3:经历猜想、验证、实践等数学活动,合作学习能力得到提高,并进一步体验数学学习的乐趣。

教学重点:

经历主动探索过程并发现和归纳分数的基本性质。

教学难点

能利用分数基本性质转化分数。

设计意图:

“分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一,以前我曾经听过几节这样的课,感觉学生都比较容易理解,觉得这知识不难,用不着老师多讲了,也就使整节课显得有点单调,枯燥,基于以上原因,我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的"不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。

教学过程

一、复习旧知,引入新课

1、直接写出得数:

(1)18÷6=  (2)120÷40=  (3)2÷3=—

180÷60=  12÷4= 10÷15=—

2、你能从前两组题中回忆起商不变性质吗?(被除数和除数同时扩大或缩小相同的倍数,商不变。)

3、你能根据第三组题说出分数与除法的关系吗?根据分数与除法的关系,将商不变性质中的被除数、除数、商分别改为分子、分母、分数值后又怎么说?()(分子和分母同时扩大或缩小相同的倍数,分数值不变。)分数中是否真有这样的规律呢?这节课我们就来探讨这个问题。

(通过上述知识的复习,为下面沟通商不变性质与分数基本性质的联系作准备。)

二、小组合作,探究新知

1、折一折,画一画

师:请同学们拿出准备好的三张长方形纸片。

要求:1)将三张同样大小的长方形纸片,分别平均分成4份、8份、16份。将第一张的3份画上阴影,第二张的6份画上阴影,第三张的12份画上阴影。

2)用分数表示阴影部分,

3)将阴影部分剪下来进行比较,看看能发现什么?

2、汇报。(师将一份学生作品贴在黑板上),

请这一同学谈谈发现:通过比较,三幅图阴影部分面积一样,因而三个分数一样大。(师板书三个分数相等的式子)

3、师出示例2的三幅图,

4、请学生写出表示阴影部分的分数,再观察三幅图阴影部分面积,同样得出三个分数一样大的结论。

师:观察第一组的三幅图,平均分的份数和取出的份数有什么变化吗?第二组的三幅图,你又从中发现了什么?

3、算一算

1)师:刚才大家借助图形发现同一组的三个分数是一样大的。下面,请大家仔细观察每一组中三个相等分数的分子和分母,你又能发现什么?

2)学生先独立思考,后小组里讨论交流想法。

3)汇报。小组派代表汇报,教师根据汇报适当板书。

(通过折一折、画一画,培养学生的动手操作能力,同时给学生提供充分的感性材料,丰富他们的生活经验又可以激发学生的学习兴趣。)

三、概括性质,揭示课题

1、师:哪位同学能用一句话把大家发现的规律概括出来呢?

2、师:像右边那样列式行吗? = ,为什么?你能将刚才概括出的规律修正一下吗?(出示分数的基本性质,全班齐读一遍。)

3、师小结:刚才我们所说的就是分数的基本性质,它在课本第四十三页,请同学们翻开课本看一看,你有哪个地方要提醒大家注意的,请在课本上用笔标示出来。(全班再齐读一遍)

4、师:分数的基本性质和商不变的规律有什么联系?

(让学生概括分数的基本性质,培养学生的概括能力,通过分子分母同时乘以0,引导学生发现分母为0,分数没有意义,以培养学生思维的缜密性,同时回应前面的复习练习。)

三、解释应用,强化认知

1、师:利用分数的基本性质可以解决很多问题。

2、第43页试一试。

观察分母(或分子)发生了什么变化,然后在括号里填上适当的数。学生独立完成后,指名回答,着重让学生说说自己的想法

3、练一练。第44页第4题。

4、判断对错

(1)分数的分子和分母都乘或除以相同的数,分数的大小不变。  (  )

(2)把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。  (  )

(3)3/4的分子乘3,分母除以3,分数的大小不变。  (  )

(4)10/24的分子加5,要使分数的大小不变,分母也必须加5。  (  )

4、数学游戏“你说我对”(图略)

(利用以上练习,运用所学的知识解决实际问题,提高解决问题的能力,培养应用意识。)

四、小结回顾,评价激励

这节课你有什么收获?运用分数的基本性质解决问题时要注意什么?

(复习所学知识和方法,加深认识,深化主题)

五、布置作业,拓展延伸

1、课本第44页第1、2、3题。(巩固所学知识)

分数的基本性质教学设计 篇九

教学内容:人教版小学数学第十册第75页至78页。

教学目标:

1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

2、培养学生的观察能力、动手操作能力和分析概括能力等。

3、让学生在学习过程中养成互相帮助、团结协作的良好品德。

教学准备:

课件、长方形纸片、彩笔。

教学过程:

一、创设情境,忆旧引新

孙悟空师徒四人来到一个小国家----数学王国,猪八戒肚子很饿, 悟空就对八戒说:“我给你10块饼,平均分2天吃完,怎么样?”八戒一听嚷道:“太少了,猴哥欺负我。”悟空眼睛一动说道:“那我就给你100块饼,平均分20天吃完,可以了吧。”八戒一听就乐了:“太好了!太好了!这回每天我可以多吃些了!”

同学们,你们认为八戒说得有道理吗?(没道理)

【通过学生耳熟能详的人物对话,给学生设计一个悬念,抓住学生的好奇心理,由此激发学生的学习兴趣。】

为什么?用你们的数学知识帮他解决一下吧。(学生立式计算)

先算出商,再观察,你发现了什么?

被除数和除数同时扩大(或缩小)相同的倍数,商不变。

同学们,再想一想除法与分数有什么关系,并完成这些练习吧。

8÷15=  3÷20=   14÷27=

二、动手操作 、导入新课

同学们对知识掌握的真不错,为了表扬你们,我决定找三个同学来与我一同分享一个兑现。(拿出准备好的长方形纸片。)

我们把三张纸片看成三块饼,大家比比看,每人的三块饼大小相等吗?请拿出第一块饼,我想与你每人一块,而且大小要是一样,你能做到吗?你给我的为什么是这块饼的一半呢?用分数怎么表示呢?

我想与你每人两块,而且大小要一样大,你又能做到吗?用分数怎样表示呢?

我如果想我想与你每人四块,你还能做到吗?这次用分数又该怎样表示呢?这三个分数大小相等吗?为什么呢?这节课,我们就来研究这个数学问题。

【通过学生的动手操作,初步感知三个分数的大小相等,为寻找原因设置悬念,再次激发学生的学习兴趣。】

三、探索分数的基本性质

你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?(  )

1、观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的大小为什么会不变呢?要弄清楚这个问题,我们必须先观察分数的分子、分母是怎样变化的。你们能从商不变的规律,分数与除法的关系中找出它们的变化规律吗?

2、学生交流、讨论并汇报,得出初步分数的基本性质。

分数的分子、分母同时乘以或除以相同的数,分数的大小不变。

3、将结论应用到

(1)先从左往右看, 是怎样变为与它相等的 的?分母乘2,分子乘2。

(2)由 到 ,分子、分母又是怎样变化的? (把平均分的份数和取的份数都扩大了4倍。)

(3)是怎样变化成与之相等的 的?

(4)又是怎样变成 的?(把平均分的份数和取的份数都缩小了4倍。)

4、综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗? (不能同时乘或除以0)为什么?

5、这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?

四、知识应用(你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?)

有位老爷爷把一块地分给三个儿子。老大分到了这块地的 ,老二分到了这块地的 。老三分到了这块的 。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

分数的分子和分母同时乘或者除以相同的数,分数的大小不变。(  )

分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。(  )

分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。(  )

⒍小结。

从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

【此过程主要由学生通过观察、比较,得出这三个分数大小相等的规律,由此牵引到其他的有同等规律的分数中,从而引出分数的基本性质:分子、分母是同时变化的,是同向变化的(是扩大都扩大,是缩小都缩小),是同倍变化的(扩大或缩小的倍数相同)。只有这样变化,分数的大小才不会变。】

五、巩固练习

⒈卡片练习:

⒉做P96“练一练”1、2。

⒊趣味游戏:

数学王国开音乐会,分数大家族的节目是女声大合唱,只有几分钟就要演出了,请大家赶紧帮合唱队的成员按要求排好队。

要求:第一排是分数值等于 的,第二排是分数值等于 的,还有一位同学是指挥,他是谁?你是怎样想的?

【通过练习,让学生加深对分数的基本性质的理解,为下节课分数的基本性质的应用打好坚实的基础。】

六、课堂总结

这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?

七、布置作业

做P97练习十八2。

以上就是为大家整理的9篇《《分数的基本性质》教学设计》,能够帮助到您,是最开心的事情。

推荐访问: