鲜切马铃薯褐变控制技术研究进展

时间:2023-09-27 13:20:03 来源:网友投稿

杨昕臻,李梅,吴小华

鲜切马铃薯褐变控制技术研究进展

杨昕臻1,李梅2,3,吴小华2,3

(1.甘肃省农业科学院,兰州 730070;
2.甘肃省农业科学院农产品贮藏加工研究所,兰州 730070;

3.甘肃省果蔬贮藏加工技术创新中心,兰州 730070)

通过综述鲜切马铃薯褐变机制及不同保鲜方法对鲜切马铃薯品质的影响,为我国鲜切马铃薯品质提升和产业发展提供参考和思路。对鲜切马铃薯褐变发生机理及国内外鲜切马铃薯品质控制技术的研究进展进行归纳总结,其中主要包括低温、回温、热处理、气调、超高压、臭氧和低温等离子体杀菌等物理保鲜技术,氯化钠、酸处理、氨基酸、3–巯基–2–丁醇和茉莉酸甲酯等化学保鲜技术,以及天然提取物、基因工程等生物保鲜技术。明确了不同保鲜技术对鲜切马铃薯褐变控制的效果。鲜切马铃薯易发生褐变,新技术和传统技术的结合有助于提高鲜切马铃薯的品质,将为今后鲜切马铃薯品质控制提供参考和依据。

鲜切马铃薯;
褐变;
物理保鲜;
化学保鲜;
生物保鲜

马铃薯被认为是全球第四大重要的粮食作物,仅次于小麦、玉米和水稻,几乎每天有超过10亿人食用。马铃薯块茎中含有大量的淀粉、维生素、矿物质、蛋白质和氨基酸等营养成分[1-2]。随着人民生活水平的提高及我国预制菜技术的发展,对鲜切马铃薯的需求和质量要求也在提升。鲜切马铃薯不仅可以保留马铃薯原有的营养和功能成分,同时具备方便快捷和健康卫生等优势,具有非常广阔的应用和市场前景。然而,马铃薯经鲜切处理后极易褐变,严重降低了马铃薯的品质,缩短了其产品的货架期,影响消费者的接受度[3]。因此,阐明鲜切马铃薯的褐变机制及其褐变抑制技术尤为重要,这不仅有利于提升马铃薯在贮运和流通过程中的稳定性和安全性,还能够降低成本、减少损失,对马铃薯的加工利用意义重大。本文通过对鲜切马铃薯褐变机制及国内外现有品质控制技术进行全面综述,以期为鲜切马铃薯的贮运保鲜技术提供思路,从而为我国马铃薯产业持续健康发展和促进乡村振兴提供参考。

鲜切马铃薯褐变主要是酶促反应的结果。酶促褐变主要是由于酚类化合物在氧化酶催化作用下转化为醌类物质引发(图1),在发生伤口或衰老等应激反应时,多酚氧化酶和过氧化物酶与多酚底物反应,诱导色素形成,开始出现褐变[4]。与大多数水果中观察到的褐变相反,鲜切马铃薯褐变的完成需要较长时间,一般在伤口愈合后4 d重新合成苯丙氨酸氨裂解酶,并出现酚类化合物的积累[5]。目前,对控制鲜切马铃薯块茎褐变的大多数策略主要集中在对多酚氧化酶(PPO)的调控上[6]。同时,由于不同马铃薯品种的遗传特性各不相同,所以不同品种的褐变特性也不同[7]。

马铃薯鲜切褐变主要由酶促褐变引起,而酶促褐变发生的3个必要条件分别为酶类(PPO)、褐变底物(酚类物质)和氧气。目前,研究抑制酶促褐变的方法主要从3个方向开展:降低O2浓度,抑制PPO活性,降低多酚物质含量。根据酶促褐变发生的途径,可通过物理保鲜、化学保鲜和生物保鲜等方法分别进行抑制,生产中则多根据实际情况采用多种方法复合进行防控。

2.1 物理保鲜技术

物理保鲜技术是通过运用一些物理方法延缓果蔬采后品质下降的一种重要手段,目前应用于鲜切马铃薯褐变抑制的物理保鲜方法有以下几种,具体见表1。

2.1.1 低温保鲜

低温保鲜处理可以有效地减少果蔬贮藏过程中水分流失、抑制果蔬的呼吸强度和微生物的增殖等,从而较好地起到保鲜作用。在鲜切过程中,由于切割引起的伤害会增强马铃薯的呼吸强度,诱导和增加与褐变相关酶的活性,加剧鲜切马铃薯褐变,导致马铃薯品质下降。通过不同温度(0、4、7、10、18 ℃)对鲜切马铃薯的保鲜效果研究发现,随着贮藏温度的升高,鲜切马铃薯相关的各品质指标变化幅度增大,且到贮藏后期温度较高条件下的样品变质速率更快,贮藏期缩短。鲜切马铃薯贮藏在4 ℃时,可以有效地保持其感官和营养品质,同时能够显著抑制酶促褐变反应、减少微生物繁殖与丙二醛(MDA)的积累[8-9]。

2.1.2 鲜切前回温处理技术

马铃薯在经过低温贮藏后进行鲜切加工的过程中,表面更容易发生褐变现象,尤其是褐变现象会随贮藏时间的延长而加重。研究发现短时回温(25 ℃)能够显著降低PPO和酚类物质含量,从而明显降低鲜切马铃薯褐变现象,有效延长货架期[10]。同时,在短时回温处理过程中鲜切马铃薯的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性和抗氧化能力显著升高,而丙二醛含量显著降低。这对保护细胞膜的完整性和减少细胞内部酶与底物接触起重要作用[11]。

图1 鲜切马铃薯褐变机制

表1 鲜切马铃薯的物理保鲜技术

Tab.1 Physical preservation technology of fresh-cut potato

2.1.3 热处理技术

通过热处理可以延缓果蔬衰老、抑制微生物生长,是一种更加安全、有效的保鲜技术。鲜切马铃薯经55 ℃热水处理10 min或60 ℃热水处理1 min,可以有效地保护细胞膜的完整性,保持其营养成分,降低PPO和POD活性,抑制马铃薯褐变进程[12]。但当热处理温度过高或时间过长时会导致马铃薯热损伤[13]。

2.1.4 气调保鲜

气调保鲜可以控制果蔬的呼吸速率、老化和成熟度,从而延长贮存期。通过加压氩气和氮气处理,并与气调保鲜相结合后对鲜切马铃薯的影响研究发现,氩气和氮气在合适的压力下能够形成水合物,能够延缓水分和抗坏血酸的损失、提升马铃薯的色泽品质和质地、抑制MDA含量、降低呼吸速率和膜脂过氧化、显著较少微生物数量,从而使鲜切马铃薯的新鲜度能保持12 d[14]。体积分数为80%的氧气预处理亦可延缓PPO的增加和MDA含量的积累,保持细胞完整性,具有显著的抗褐变作用[15]。

2.1.5 超高压技术

超高压技术是一种新型的非热加工技术,可以很好地保持食品中原有组分甚至提高其食用价值。超高压处理的鲜切马铃薯色泽品质较好,但其质构发生改变,硬度显著下降[16]。为了解决马铃薯质地软化的问题,通过与氯化钙联合处理能够抑制纤维素降解,提髙细胞抗性,从而改善马铃薯质地[17]。但是由于超高压设备要求高,在鲜切马铃薯商品化处理中的应用仍需进一步提升。

2.1.6 臭氧处理

臭氧具有无污染、无残留、易分解等特性,广泛应用于果蔬贮运过程中。鲜切马铃薯经1.61 mg/L的臭氧水处理,能够显著抑制POD和PPO的活性,并有效延缓与褐变相关的抗坏血酸酶的活性,消除过氧化氢和酚类物质[18]。

2.1.7 低温等离子体技术

低温等离子体技术是通过热、电压或电磁场形式引起食品周围介质产生电离、激发和解离反应,形成的各种活性物质起到杀菌作用。低温等离子体技术能够降低鲜切马铃薯中PPO和POD活性,有效地保持了细胞的完整性和干物质含量,同时可以清除病原微生物,排除和分解乙烯等有害气体,提升鲜切马铃薯品质[19-20]。

2.1.8 短波紫外线保鲜

短波紫外线照射能够有效地阻碍微生物细胞复制的正常进行,起到抑制微生物生长或者杀菌的作用。经过短波紫外线处理的鲜切马铃薯中微生物数量显著降低,并对保持马铃薯的气味和硬度产生了积极影响。在低温条件下可保持马铃薯良好的品质和感官特性长达15 d[21-22]。

2.2 化学保鲜技术

化学保鲜技术大多通过外源化学物质浸泡、喷洒或熏蒸达到保鲜效果。化学物质主要包括生长抑制剂、防腐剂和保鲜剂等(表2)。

2.2.1 氯化钠

氯化钠通过改变氨基酸含量来诱导完整植物的抗褐变反应,可以抑制多种鲜切农产品的褐变。研究表明,马铃薯中游离酪氨酸是PPO催化的主要底物[23]。NaCl处理能够有效抑制鲜切马铃薯褐变,这主要是由于NaCl处理可以使PPO(蛋白质)变性,从而显著降低PPO活性,增加鲜切马铃薯的内在Pro等游离氨基酸的含量,进而有效减少了与醌类结合生成褐色物质。这为防止鲜切马铃薯褐变提供了新途径[24]。

2.2.2 醋酸和乳酸

将马铃薯片预浸泡在醋酸或乳酸中可以防止马铃薯细胞壁结构在煮沸过程中的降解,这主要是由于经酸处理后,酸能够渗透到马铃薯细胞中,从而抑制了聚半乳糖醛酸酶活性并延缓了马铃薯细胞壁结构的降解[25]。同时,酸在马铃薯细胞中的渗透促进了果胶的原位凝胶化,从而将马铃薯细胞紧密相连,提升了马铃薯的硬度,防止了细胞液泡中的组织外渗到细胞质中与酶类发生反应,以防止褐变发生[26]。

2.2.3 氨基酸

氨基酸是重要的渗透调节物质之一,可以与醌类物质结合或作为螯合剂形成无色加合物,从而减少褐变。研究表明,氨基酸可以参与调节鲜切马铃薯的褐变,其中异亮氨酸、缬氨酸、脯氨酸、天冬氨酸、精氨酸、苏氨酸、谷氨酸、蛋氨酸、丙氨酸和亮氨酸等10种氨基酸可通过抑制多酚氧化酶的活性调节褐变中间体的形成,从而抑制鲜切马铃薯的褐变,而酪氨酸、丝氨酸和赖氨酸则对褐变有促进作用[27-29]。

表2 鲜切马铃薯的化学保鲜技术

Tab.2 Chemical preservation technology of fresh-cut potato

2.2.4 3–巯基–2–丁醇

3–巯基–2–丁醇是一种新型、安全、有效的抗褐变剂,其抑制作用接近亚硫酸氢钠。3–巯基–2–丁醇是多酚氧化酶的竞争性抑制剂。鲜切马铃薯经3–巯基–2–丁醇处理后其多酚氧化酶相关基因(POT32和POT33)的表达水平降低,酶促褐变底物酪氨酸的浓度显著提升。由此推断,3–巯基–2–丁醇可以通过抑制多酚氧化酶的活性来减少酪氨酸的消耗,从而提升鲜切马铃薯的贮藏品质[30]。

2.2.5 茉莉酸甲酯

茉莉酸甲酯是一种诱导剂,可以激活次级代谢物的合成,在植物防御反应中起重要作用,用于果蔬保鲜能够延长果蔬贮藏期,保持营养品质[31]。用茉莉酸甲酯处理的鲜切马铃薯在室温贮藏144 h时发生酶促褐变,其总酚和类黄酮的消耗减少,多酚氧化酶、POD和H2O2保持较高的活性。与对照组相比,茉莉酸甲酯亦诱导了鲜切马铃薯的苯丙氨酸氨化酶、肉桂酸–4–羟化酶和4–香豆酸–CoA连接酶活性的增加。但是,茉莉酸甲酯处理的马铃薯对保持维生素C含量效果不显著[32]。

2.2.6 可食性涂膜保鲜技术

可食性涂膜保鲜技术以多糖、蛋白质为基材,通过添加具有功能性成分的保鲜材料,形成具有保鲜功能的涂膜进行果蔬保鲜,以有助于保持或改善其颜色、质地、机械完整性、挥发性风味和减少微生物生长[33]。通过分析4种可食用水胶体涂层(羧甲基纤维素、壳聚糖、果胶和阿拉伯树胶)与天然橄榄叶提取物和抗坏血酸钠富集涂层对鲜切马铃薯贮藏过程中的颜色、pH值和水分含量的影响,发现羧甲基纤维素和阿拉伯树胶与橄榄叶提取物和抗坏血酸钠复合能够较好地保持鲜切马铃薯的颜色、pH值和水分[34]。大量研究表明,壳聚糖复合涂膜液对能够维持鲜切马铃薯较低的呼吸速率,较高的POD、SOD活性,延缓了MDA的积累,抑制了PPO活性,褐变抑制效果明显[35-37]。

2.3 生物保鲜技术

生物保鲜技术通常指利用拮抗菌与病原菌间形成竞争、寄生或诱导作用的关系进行保鲜。例如一些拮抗菌产生的次级代谢产物亦可起到保鲜作用;
利用天然提取物或人工合成的仿生保鲜剂保鲜;
利用基因工程、酶工程等技术保鲜[38]。生物保鲜具有贮藏空间小、易控制、成本低、污染少等优势。

2.3.1 天然提取物保鲜

天然多酚广泛用于果蔬保鲜[39]。沙棘提取物富含儿茶素、没食子酸、木麻黄素和异鼠李糖素等生物活性化合物,是沙棘叶提取物的主要成分。研究表明,沙棘叶提取物通过降低POD和苯丙氨酸氨裂解酶的活性,提高马铃薯的抗氧化能力,抑制鲜切马铃薯的褐变。沙棘叶提取物竞争性地抑制多酚氧化酶,IC50值为0.7 mg/mL。分子对接表明没食子酸稳定地结合在多酚氧化酶的活性位点上,而异鼠李苷对多酚氧化酶的亲和力较低[40]。研究发现,绿原酸通过疏水相互作用与多酚氧化酶结合,改变了PPO的氢键网络,导致二级结构的重新排列[41]。基于对PPO活性的抑制作用,天然多酚物质保鲜可能成为一种新型的鲜切马铃薯保鲜剂。

生物活性肽作为一种安全、营养和低成本的抗氧化剂和抗菌剂,可有效地抑制果蔬褐变。研究发现鳕鱼肽对鲜切马铃薯贮藏过程中PPO、POD活性、苯丙氨酸氨裂解酶具有抑制作用,可以延缓总酚和MDA含量的增加,有效地阻断酶促褐变[42]。

2.3.2 基因工程

利用基因工程技术增加或减少与酶促褐变有关基因的表达,培育出不易褐变的马铃薯品种[43-44]。通过反义PPO基因改造,可以降低马铃薯块茎中PPO和酚类物质含量,以减轻马铃薯褐变。利用人工miRNA(amiRNA)技术抑制马铃薯中参与PPO基因(Stu PPO1、Stu PPO2、Stu PPO3 和 Stu PPO4)的表达,可以降低马铃薯的褐变现象[45]。

2.4 综合保鲜技术

尽管物理、化学和生物保鲜方法已在鲜切马铃薯保鲜中得到广泛应用,但是探求多种保鲜技术联合处理会取得更好的效果[46]。利用超声联合苦苣菜提取物或马齿苋提取物处理鲜切马铃薯,在较低提取物浓度时即可有效地控制PPO、POD、苯丙氨酸氨裂解酶、脂氧合酶的活性和可溶性醌类物质含量,而且有效降低了对细胞膜的损伤,保持了细胞膜的完整性和通透性,提高了鲜切马铃薯的抗氧化能力[47-48]。使用低频超声结合抗坏血酸处理能够有效地抑制PPO活性,保持较高的维生素C的含量,同时限制质膜过氧化和溶质迁移来保持膜的完整性,从而提升鲜切马铃薯的贮藏品质[49]。将ε–聚赖氨酸/壳聚糖(ε–PL/CS)复合涂层和加压氩气结合气调包装协同处理,能够显著减少鲜切马铃薯中微生物数量,延缓水分和抗坏血酸的损失,保持较好的颜色和质构,并抑制PPO和POD活性,减少MDA含量[50]。

鲜切马铃薯具有食用方便、品质新鲜、营养卫生等特点,但在加工过程中存在褐变、失水、腐烂等诸多问题,尤其在切割后极易发生褐变,使货架期缩短,严重影响了鲜切马铃薯的品质质量和商品价值,经济损失严重。因此,本文对抑制马铃薯褐变的物理及化学抑制技术进行了阐述,从而为今后实现鲜切马铃薯产业化奠定基础。总体来说,化学抑制法时效性强、抑制效果明显,但其操作烦琐,成本较高,并且化学物质的使用可能会带来药物残留,对人体有害。物理抑制法具有安全、无药物残留的特点,能有效抑制切割后褐变的发生。近年来,超声波、超高压和等离子体等非热技术已逐渐应用于果蔬保鲜领域,而在鲜切果蔬中,非热技术能够更好地保持鲜切果蔬的营养品质和功能成分。但要从生产上切实解决鲜切马铃薯褐变问题,上述方法均很难满足产业化需求。随着现代生物技术的飞速发展,组学技术已在果蔬保鲜领域有着较广泛的应用。通过转录组、蛋白质组和代谢组相结合,有助于筛选出与马铃薯褐变相关的差异表达分子、蛋白质和代谢物,对鲜切马铃薯的品质控制极具指导意义,进一步为我国鲜切马铃薯品质提升和产业发展提供参考和思路。

[1] CALLIOPE S R, LOBO M O, SAMMÁN N C. Biodiversity of Andean Potatoes: Morphological, Nutritional and Functional Characterization[J]. Food Chemistry, 2018, 238: 42-50.

[2] DEVAUX A, KROMANN P, ORTIZ O. Potatoes for Sustainable Global Food Security[J]. Potato Research, 2014, 57(3/4): 185-199.

[3] MA Liang, ZHANG Min, BHANDARI B, et al. Recent Developments in Novel Shelf Life Extension Technologies of Fresh-Cut Fruits and Vegetables[J]. Trends in Food Science and Technology, 2017, 64: 23-38.

[4] QIAO Li-ping, GAO Man, WANG Yan-sheng, et al. Integrated Transcriptomic and Metabolomic Analysis of Cultivar Differences Provides Insights into the Browning Mechanism of Fresh-Cut Potato Tubers[J]. Postharvest Biology and Technology, 2022, 188: 111905.

[5] LI Ling, BAI Juan-juan, WU Min-ming, et al. Studies on Browning Inhibition Technology and Mechanisms of Fresh-Cut Potato[J]. Journal of Food Processing and Preservation, 2017, 41(6): e13263.

[6] CANTOS E, TUDELA J A, GIL M I, et al. Phenolic Compounds and Related Enzymes are not Rate-Limiting in Browning Development of Fresh-Cut Potatoes[J]. Journal of Agricultural and Food Chemistry, 2002, 50(10): 3015-3023.

[7] CABEZAS-SERRANO A B, MARIA L A, ROSARIA C, et al. Suitability of Five Different Potato Cultivars (Solanum Tuberosum L.) to be Processed as Fresh-Cut Products[J]. Postharvest Biology and Technology, 2009, 53(3): 138-144.

[8] ZHAO Song-song, HAN Xin-yi, LIU Bin, et al. Shelf-Life Prediction Model of Fresh-Cut Potato at Different Storage Temperatures[J]. Journal of Food Engineering, 2022, 317: 110867.

[9] 刘程惠, 胡文忠, 姜爱丽, 等. 不同贮藏温度下鲜切马铃薯的生理生化变化[J]. 食品与机械, 2008, 24(02): 38-42.

LIU Cheng-hui, HU Wen-zhong, JIANG Ai-li, et al. Physio-Biochemical Changes of Fresh-Cut Potato at Different Storage Temperatures[J]. Food and Machinery, 2008, 24(2): 38-42.

[10] XU Xin, LIU Pei DONG Tian-tian, et al. Short-Term Warming Inhibits Polyphenol Oxidase Activity and Influences Free Amino Acid Accumulation and De Novo Synthesis of Tyrosine in Fresh-Cut Potato[J]. Postharvest Biology and Technology, 2022, 186: 111830.

[11] GONG Ying, WANG Qing-guo, MA Su, et al. Short-Time Water Immersion Inhibits Browning of Fresh-Cut Potato by Enhancing Antioxidant Capability and Tyrosine Scavenging[J]. Journal of Food Processing and Preservation, 2019, 43(11): 14168.

[12] 张迎娟, 樊彩虹, 张敏. 热水处理对预包装鲜切马铃薯品质的影响[J]. 包装工程, 2014, 35(17): 7-11.

ZHANG Ying-juan, FAN Cai-hong, ZHANG Min. Effects of Hot Water Treatment on Quality of Pre-Packaged Fresh-Cut Potatoes[J]. Packaging Engineering, 2014, 35(17): 7-11.

[13] TSOUVALTZIS P, DELTSIDIS A, BRECHT J K. Hot Water Treatment and Pre-Processing Storage Reduce Browning Development in Fresh-Cut Potato Slices[J]. Hortscience, 2011, 46(9): 1282-1286.

[14] SHEN Xu, ZHANG Min, DEVAHASTIN S, et al. Effects of Pressurized Argon and Nitrogen Treatments in Combination with Modified Atmosphere on Quality Characteristics of Fresh-Cut Potatoes[J]. Postharvest Biology and Technology, 2019, 149:159-165.

[15] LIU Xia, WANG Ting, LU Yu-zhuo, et al. Effect of High Oxygen Pretreatment of Whole Tuber on Anti-Browning of Fresh-Cut Potato Slices During Storage[J]. Food Chemistry, 2019, 301: 125287.

[16] 黄欢, 王绍帆, 韩育梅. 超高压处理对鲜切马铃薯质地及细胞壁多糖含量的影响[J]. 食品工业科技, 2020, 41(2): 258-266.

HUANG Huan, WANG Shao-fan, HAN Yu-mei. Effect of Ultra High Pressure Treatment on the Texture and Cell Wall Polysaccharide Content of Fresh-Cut Potato[J]. Science and Technology of Food Industry, 2020, 41(2): 258-266.

[17] 索慧敏, 黄欢, 王杰, 等. 氯化钙对超高压处理的鲜切马铃薯硬度改善效果的研究[J]. 中国粮油学报, 2021, 36(10): 29-34.

SUO Hui-min, HUANG Huan, WANG Jie, et al. Effect of Calcium Chloride in the Improvement of the Hardness of Fresh-Cut Potato Treated by Ultra-High Pressure[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(10): 29-34.

[18] CALDER B L, SKONBERG D I, DAVIS-DENTICI K, et al. The Effectiveness of Ozone and Acidulant Treatments in Extending the Refrigerated Shelf Life of Fresh-Cut Potatoes[J]. Journal of Food Science, 2011, 76(8): 492-498.

[19] BAGHERI H, ABBASZADEH S. Effect of Cold Plasma on Quality Retention of Fresh-Cut Produce[J]. Journal of Food Quality, 2020, 2020: 8866369.

[20] LIM JY, BYEON YS, HONG EJ, et al. Effect of Post-Discharge Time of Plasma-Treated Water (PTW) on Microbial Inactivation and Quality of Fresh-Cut Potatoes[J]. Journal of Food Processing and Preservation, 2021, 45(5): 15387.

[21] PELAIĆ Z, ČOŠIĆ Z, REPAJIĆ M, et al. Effect of UV-C Irradiation on the Shelf Life of Fresh-Cut Potato and Its Sensory Properties after Cooking[J]. Food Technology And Biotechnology, 2022, 60(2): 166-177.

[22] PELAIĆ Zdenka, Čošić Zrinka, PEDISIĆ Sandra,et al. Effect of UV-C Irradiation, Storage and Subsequent Cooking on Chemical Constituents of Fresh-Cut Potatoes[J]. Foods, 2021, 10(8): 1698.

[23] STEVENS L H, DAVELAAR E, KOLB R B, et al. Tyrosine and Cysteine are Substrates for Blackspot Synthesis in Potato[J]. Phytochemistry, 1998, 49(3): 703-707.

[24] MA Yu-rong, WANG Hong-ying, YAN Han, et al. Pre-Cut Nacl Solution Treatment Effectively Inhibited the Browning of Fresh-Cut Potato by Influencing Polyphenol Oxidase Activity and Several Free Amino Acids Contents[J]. Postharvest Biology and Technology, 2021, 178: 111543.

[25] GONG Wei-hua, SHI Bing-yan, ZENG Fan-kui, et al. Evaluation of Cooking, Nutritional, and Quality Characteristics of Fresh-Cut Potato Slice Pretreated with Acetic Acid[J]. Journal of Food Science, 2022, 87(1): 427-437.

[26] 王梅, 吴方佳, 徐俐, 等. 乳酸预处理对鲜切马铃薯冷藏品质和生理特性的影响[J]. 中国食品学报, 2020, 20(8): 207-215.

WANG Mei, WU Fang-jia, XU Li, et al. Effects of Lactic Acid Pretreatment on Quality and Physiological Properties of Fresh-Cut Potato during Cold Storage[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(8): 207-215.

[27] LIU Pei, XU Na, LIU Ru-feng, et al. Exogenous Proline Treatment Inhibiting Enzymatic Browning of Fresh-Cut Potatoes during Cold Storage[J]. Postharvest Biology and Technology, 2022, 184: 111754.

[28] ALI H M, EL-GIZAWY A M, EL-BASSIOUNY R E I, et al. The Role of Various Amino Acids in Enzymatic Browning Process in Potato Tubers, and Identifying the Browning Products[J]. Food Chemistry, 2016, 192: 879-885.

[29] 额日赫木, 王梦茹, 张芳, 等. 真空浸渍辅助L–半胱氨酸处理对贮藏期鲜切马铃薯的护色作用[J]. 食品研究与开发, 2020, 41(14): 28-33.

ERIHEMU, WANG Meng-ru, ZHANG Fang, et al. Anti-Browning Effect of Vacuum Impregnation Assisted L-Cysteine Treatment on Fresh-Cut Potatoes during Storage[J]. Food Research and Development, 2020, 41(14): 28-33.

[30] RU Xue-yin, TAO Ning, FENG Yan-yan, et al. A Novel Anti-Browning Agent 3-Mercapto-2-Butanol for Inhibition of Fresh-Cut Potato Browning[J]. Postharvest Biology and Technology, 2020, 170: 111324.

[31] MUSTAFA MA, ALI A, SEYMOUR G, et al. Treatment of Dragonfruit () with Salicylic Acid and Methyl Jasmonate Improves Postharvest Physico-Chemical Properties and Antioxidant Activity during Cold Storage[J]. Scientia Horticulturae, 2018, 231: 89-96.

[32] ZHOU Fu-hui, JIANG Ai-li, FENG Ke, et al. Effect of Methyl Jasmonate on Wound Healing and Resistance in Fresh-Cut Potato Cubes[J]. Postharvest Biology and Technology, 2019, 157: 110958.

[33] SILVA-WEISS A, IHL M, SOBRAL PJA, et al. Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods[J]. Food Engineering Reviews, 2013, 5: 200-216.

[34] KUREK M, REPAJIĆ M, MARIĆ M, et al. The Influence of Edible Coatings and Natural Antioxidants on Fresh-Cut Potato Quality, Stability and Oil Uptake after Deep Fat Frying[J]. Journal of Food Science and Technology, 2021, 58(8): 3073-3085.

[35] 李玲, 郭衍银. 1–甲基环丙烯联合壳聚糖对鲜切马铃薯保鲜效果的影响[J]. 现代食品科技, 2013, 29(8): 1893-1897.

LI Ling, GUO Yan-yin. Effect of 1-methylcyclopropene Combined with Chitosan on the Preservation of Fresh- Cut Potato[J]. Modern Food Science & Technology, 2013, 29(8): 1893-1897.

[36] 周静亚, 徐忠传, 钱林林, 等. 3种复合保鲜剂对抑制马铃薯净菜褐变效果的研究[J]. 安徽农业科学, 2010, 38(25): 13816-13819.

ZHOU Jing-ya, XU Zhong-chuan, QIAN Lin-lin, et al. Study on the Inhibition Effect of Fresh-Cut Potato Browning after the Treatment with Three Compound Preservatives[J]. Journal of Anhui Agricultural Sciences, 2010, 38(25): 13816-13819.

[37] 刘进杰, 王淑芳, 卜庆梅, 等. 壳聚糖涂膜对鲜切马铃薯褐变程度的影响[J]. 食品科技, 2007(5): 255-258.

LIU Jin-jie, WANG Shu-fang, BU Qing-mei, et al. Effect of Chitosan Film on the Browning Degree of Fresh-Cut Potato[J]. Food Science and Technology, 2007(5): 255-258.

[38] 张慜, 冯彦君. 果蔬生物保鲜新技术及其研究进展[J]. 食品与生物技术学报, 2017, 36(5): 449-455.

ZHANG Min, FENG Yan-jun. New Bio-Preservation Technology of Fruits & Vegetables and Its Research Progress[J]. Journal of Food Science and Biotechnology, 2017, 36(5): 449-455.

[39] HU Wen-zhong, SARENGAOWA, GUAN Yu-ge, et al. Biosynthesis of Phenolic Compounds and Antioxidant Activity in Fresh-Cut Fruits and Vegetables[J]. Frontiers in Microbiology, 2022, 13: 906069.

[40] ZHANG Zi-mo, PENG Yong, MENG Wen-bo, et al. Browning Inhibition of Seabuckthorn Leaf Extract on Fresh-Cut Potato Sticks during Cold Storage[J]. Food Chemistry, 2022, 389: 133076.

[41] CHENG Dai, WANG Guang-liang, TANG Jin-lei, et al. Inhibitory Effect of Chlorogenic Acid on Polyphenol Oxidase and Browning of Fresh-Cut Potatoes[J]. Postharvest Biology and Technology, 2020, 168: 111282.

[42] LIU Xia, LU Yu-zhuo, YANG Qian, et al. Cod Peptides Inhibit Browning in Fresh-Cut Potato Slices: A Potential Anti-Browning Agent of Random Peptides for Regulating Food Properties[J]. Postharvest Biology and Technology, 2018, 146: 36-42.

[43] CORNACCHIA R, CABEZAS-SERRANO A B, AMODIO M L, et al. Suitability of 4 Potato Cultivars (L.) to be Processed as Fresh-Cut Product, Early Cultivars[J]. American Journal of Potato Research, 2011, 88(5): 403-412.

[44] DONG Tian-tian, CAO Yu, LI Guang-cun, et al. Enhanced Expression of Serine Protease Inhibitor Stspi128 Alleviates the Enzymatic Browning in Fresh-Cut Potatoes via Increasing Antioxidant Abilities[J]. Postharvest Biology and Technology, 2022, 192: 112022.

[45] WANG Li-hua, WANG Wen-jun, WANG Qing-jun, et al. Identification of the miRNAs and their Target Genes Involved in Fresh-Cut Potato Browning Inhibition by Nitrogen[J]. International Journal of Food Science and Technology, 2022, 57(8): 5011-5023.

[46] RAFFO A, PAOLETTI F. Fresh-Cut Vegetables Processing: Environmental Sustainability and Food Safety Issues in a Comprehensive Perspective[J]. Frontiers in Sustainable Food Systems, 2022, 5: 681459.

[47] ZHU Yin-xia, DU Xin-ru, ZHENG Jia-xuan, et al. The Effect of Ultrasonic on Reducing Anti-Browning Minimum Effective Concentration of Purslane Extract on Fresh-Cut Potato Slices During Storage[J]. Food Chemistry, 2021, 343: 128401.

[48] AKYOL H, RICIPUTI Y, CAPANOGLU E, et al. Phenolic Compounds in the Potato and Its Byproducts: An Overview[J]. International Journal of Molecular Sciences, 2016, 17(6): 835.

[49] XU Yu-jia, WANG Dan, ZHAO Wen-ting, et al. Low Frequency Ultrasound Treatment Enhances Antibrowning Effect of Ascorbic Acid in Fresh-Cut Potato Slices[J]. Food Chemistry, 2022, 380: 132190.

[50] SHEN Xu, ZHANG Min, FAN Kai, et al. Effects of ε-Polylysine/Chitosan Composite Coating and Pressurized Argon in Combination with Map on Quality and Microorganisms of Fresh-Cut Potatoes[J]. Food and Bioprocess Technology, 2020, 13: 145-158.

Research Progress on Browning Control Technology of Fresh-cut Potatoes

YANG Xin-zhen1, LI Mei2,3, WU Xiao-Hua2,3

(1. Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; 2. Agricultural Product Storage and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; 3. Gansu Innovation Center of Fruit and Vegetable Storage and Processing, Lanzhou 730070, China)

The work aims to review the browning mechanism of fresh-cut potatoes and the effects of different preservation methods on the quality of fresh-cut potatoes, so as to provide reference for quality improvement and industrial development of fresh-cut potatoes in China. The browning mechanism of fresh-cut potatoes and the research progress on quality control technologies of fresh-cut potatoes at home and abroad were reviewed, which mainly included physical preservation technologies such as low temperature, short-term warming, heat treatment, modified atmosphere preservation, ultra-high pressure, ozone and low-temperature plasma, chemical preservation technologies such as sodium chloride, acid treatment, amino acids, 3-mercapto-2-butanol and methyl jasmonate, and biological preservation technologies such as natural extracts and genetic engineering. The effects of different fresh-keeping techniques on browning control of fresh cut potatoes are clarified. Fresh-cut potatoes are prone to browning. The combination of new technologies and traditional technologies will help improve the quality of fresh-cut potatoes. It will provide a reference and basis for quality control of fresh-cut potatoes in the future.

fresh-cut potato; browning; physical preservation; chemical preservation; biological preservation

TS255.3

A

1001-3563(2023)13-0112-08

10.19554/j.cnki.1001-3563.2023.13.014

2022−10−26

公益性行业(农业)科研专项(201503001–7)

杨昕臻(1984—),男,本科,助理研究员,主要研究方向为马铃薯育种与栽培。

吴小华(1984—),女,硕士,副研究员,主要研究方向为农产品贮藏与加工。

责任编辑:曾钰婵

猜你喜欢褐变氧化酶果蔬外源乙烯处理对黄冠梨果皮褐变和货架期品质的影响农业工程学报(2022年6期)2022-06-27HPV16E6与吲哚胺2,3-二氧化酶在宫颈病变组织中的表达昆明医科大学学报(2020年12期)2021-01-26奇思妙想的果蔬们童话世界(2019年26期)2019-09-24清洗果蔬农残 你做对了吗启蒙(3-7岁)(2018年8期)2018-08-13这些果蔬能保护呼吸道基层中医药(2018年2期)2018-05-31影响牡丹石榴外植体褐变的因素分析江苏农业科学(2016年9期)2016-11-28果蔬大作战童话世界(2016年8期)2016-06-02小麦多酚氧化酶的分离纯化及酶学性质研究中国粮油学报(2016年5期)2016-01-23茶叶多酚氧化酶及其同工酶的研究进展茶叶通讯(2014年2期)2014-02-27鸭梨果实多酚氧化酶酶学特性食品科学(2013年15期)2013-03-11

推荐访问:研究进展 马铃薯 控制