2023高一年级数学必修五知识点8篇(范文推荐)

时间:2023-02-22 18:30:05 来源:网友投稿

下面是小编为大家整理的2022高一年级数学必修五知识点8篇(范文推荐),供大家参考。

2022高一年级数学必修五知识点8篇(范文推荐)

进入高中后,很多新生有这样的心理落差,比自己成绩优秀的大有人在,很少有人注意到自己的存在,心理因此失衡,这是正常心理,但是应尽快进入学习状态。下面为您精心整理了8篇《高一年级数学必修五知识点》,希望朋友们参阅后能够文思泉涌。

高一年级数学必修五知识点 篇一

⑴如果数列{a}是公比为q的等比数列,那么,它的前n项和公式是S=

也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处。因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q=1和q≠1进行讨论。

⑵当已知a,q,n时,用公式S=;当已知a,q,a时,用公式S=。

⑶若S是以q为公比的等比数列,则有S=S+qS.⑵

⑷若数列{a}为等比数列,则S,S-S,S-S,…仍然成等比数列。

⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,S成等比数列,T,T,T亦成等比数列

万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α)

cos2α=(1-tan^2α)/(1+tan^2α)tan2α=2tanα/(1-tan^2α)

高一数学必修五知识点梳理 篇二

概率性质与公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai)。它是由因求果,

贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;

如果一个事件B可以在多种情形(原因)A1,A2,。.。.,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。

(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,。.。.,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。

高一数学必修五知识点梳理 篇三

⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用

高一数学必修五知识点梳理 篇四

函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。

(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。

(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。

(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。

(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。

(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。

(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。

高一数学必修五知识点梳理 篇五

1、数列的函数理解:

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:

a.列表法;

b.图像法;

c.解析法。

其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

2、通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。

数列通项公式的特点:

(1)有些数列的通项公式可以有不同形式,即不。

(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,。.。)。

3、递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。

数列递推公式特点:

(1)有些数列的递推公式可以有不同形式,即不。

(2)有些数列没有递推公式。

有递推公式不一定有通项公式。

注:数列中的项必须是数,它可以是实数,也可以是复数。

高一年级数学必修五知识点 篇六

一、公理、定理、推论、逆定理:

1、公认的真命题叫做公理。

2、其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。

3、由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。

4、如果一个定理的逆命题是真命题,那么这个逆命题就叫原定理的逆定理。

二、类比推理:

一道数学题是由已知条件、解决办法、欲证结论三个要素组成,这此要求可以看作是数学试题的属性。如果两道数学题是在一系列属性上相似,或一道是由另一道题来的,这时,就可以运用类比推理的方法,推测其中一道题的属性在另一道题中也存在相同或相似的属性。

三、证明:

1、对某个命题进行推理的过程称为证明,证明的过程包括已知、求证、证明

2、证明的一般步骤:

(1)审清题意,明确条件和结论;

(2)根据题意,画出图形;

(3)根据条件、结论,结合图形,写出已知求证;

(4)对条件与结论进行分析;

(5)根据分析,写出证明过程

3、证明常用的方法:综合法、分析法和反证法。

四、辅助线在证明中的应用:

在几何题的证明中,有时了为证明需要,在原题的图形上添加一些线度,这些线段叫做辅助线,常用虚线表示。并在证明的开始,写出添加过程,在证明中添加的辅助线可作为已知条件参与证明。

高一数学必修五知识点梳理 篇七

1、不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式。

2、比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba

3、不等式的性质

(1)对称性:ab

(2)传递性:ab,ba

(3)可加性:aa+cb+c,ab,ca+c

(4)可乘性:ab,cacb0,c0bd;

(5)可乘方:a0bn(nN,n

(6)可开方:a0

(nN,n2)。

注意:

一个技巧

作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方。

一种方法

待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围。

高一年级数学必修五知识点 篇八

方程的根与函数的零点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点。

3、函数零点的求法:

(1)(代数法)求方程的实数根;

(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

4、二次函数的零点:

(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

以上就是为大家带来的8篇《高一年级数学必修五知识点》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。

推荐访问:知识点 必修 数学 高一年级数学必修五知识点8篇 高一年级数学必修五知识点 高一数学必修5知识点