2023年度八年级上册数学复习知识点五篇(完整)

时间:2023-02-26 10:20:06 来源:网友投稿

下面是小编为大家整理的2022年度八年级上册数学复习知识点五篇(完整),供大家参考。

2022年度八年级上册数学复习知识点五篇(完整)

复习数学时要有自己的思路。下面是为大伙儿带来的5篇《八年级上册数学复习知识点》,可以帮助到您,就是小编最大的乐趣哦。

八年级上册数学复习知识点 篇一

四边形的相关概念

1、四边形

在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

2、四边形具有不稳定性

3、四边形的内角和定理及外角和定理

四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n边形的内角和等于(n2)180°;

多边形的外角和定理:任意多边形的外角和等于360°。

6、设多边形的边数为n,则多边形的对角线共有n(n3)条。从n边形的一个顶点出2

发能引(n-3)条对角线,将n边形分成(n-2)个三角形。

八年级上册数学复习知识点 篇二

平行四边形

1、平行四边形的定义

两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质

(1)平行四边形的对边平行且相等。

(2)平行四边形相邻的角互补,对角相等

(3)平行四边形的对角线互相平分。

(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段

的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3、平行四边形的判定

(1)定义:两组对边分别平行的四边形是平行四边形

(2)定理1:两组对角分别相等的四边形是平行四边形

(3)定理2:两组对边分别相等的四边形是平行四边形

(4)定理3:对角线互相平分的四边形是平行四边形

(5)定理4:一组对边平行且相等的四边形是平行四边形

4、两条平行线的距离

两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。 平行线间的距离处处相等。

5、平行四边形的面积

S平行四边形=底边长×高=ah

初二上学期数学知识点归纳 篇三

三角形知识概念

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13、公式与性质:

(1)三角形的内角和:三角形的内角和为180°

(2)三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

(3)多边形内角和公式:边形的内角和等于?180°

(4)多边形的外角和:多边形的外角和为360°

(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。②边形共有条对角线。

初二年级数学总复习资料 篇四

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1、平方差公式

(1)式子: a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1、因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2、因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2 =(a+b)2

a2-2ab+b2 =(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的(www..com)式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式。

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m +n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m+ n)

=(m +n)??(a +b)。

这种利用分组来分解因式的方法叫做分组分解法。从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。

(六)提公因式法

1、在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式。当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。

2、 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

1、必须先将常数项分解成两个因数的积,且这两个因数的代数和等于

一次项的系数。

2、将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

① 列出常数项分解成两个因数的积各种可能情况

②尝试其中的哪两个因数的和恰好等于一次项系数。

3、将原多项式分解成(x+q)(x+p)的形式。

(七)分式的乘除法

1、把一个分式的分子与分母的公因式约去,叫做分式的约分。

2、分式进行约分的目的是要把这个分式化为最简分式。

3、如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式。如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分。

4、分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

5、分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理。当然,简单的分式之分子分母可直接乘方。

6、注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减。

(八)分数的加减法

1、通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

4、通分的依据:分式的基本性质。

5、通分的关键:确定几个分式的公分母。

通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母。

6、类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

7、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8、异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。

9、作为最后结果,如果是分式则应该是最简分式。

(九)含有字母系数的一元一次方程

1、含有字母系数的一元一次方程

引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)

在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

10、同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。

11、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。

12、异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化。

八年级数学上册总复习 篇五

第一章 勾股定理

1、勾股定理:直角三角形两直角边的平方和等于斜边的平方;即 。

2、勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

3、勾股定理逆定理:如果三角形的三边长 , , 满足 ,那么这个三角形是直角三角形。满足 的三个正整数称为勾股数。

第二章 实数

1、平方根和算术平方根的概念及其性质:

(1)概念:如果 ,那么 是 的平方根,记作: ;其中 叫做 的算术平方根。

(2)性质:①当 ≥0时, ≥0;当 <0时, 无意义;② = ;③ 。

2、立方根的概念及其性质:

(1)概念:若 ,那么 是 的立方根,记作: ;

(2)性质:① ;② ;③ =

3、实数的概念及其分类:

(1)概念:实数是有理数和无理数的统称;

(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。

4、与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。

5、算术平方根的运算律: ( ≥0, ≥0); ( ≥0, >0)。

第三章 图形的平移与旋转

1、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

2、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。这点定点称为旋转中心,转动的角称为旋转角。旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。

3、作平移图与旋转图。

第四章 四边形性质的探索

1、多边形的分类

2、平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:

(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

(2)菱形:一组邻边相等的平行四边形叫做菱形。菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。菱形的面积等于两条对角线乘积的一半(面积计算,即S 菱形=L1_L2/2)。

(3)矩形:有一个内角是直角的平行四边形叫做矩形。矩形的对角线相等;四个角都是直角。对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。直角三角形斜边上的中线等于斜边长的一半; 在直角三角形中30°所对的直角边是斜边的一半。

(4)正方形:一组邻边相等的矩形叫做正方形。正方形具有平行四边形、菱形、矩形的一切性质。

(5)等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。

(6)三角形中位线:连接三角形相连两边重点的线段。性质:平行且等于第三边的一半

3、多边形的内角和公式:(n-2)_180°;多边形的外角和都等于 。

4、中心对称图形:在平面内,一个图形绕某个点旋转 ,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

第五章 位置的确定

1、直角坐标系及坐标的相关知识。

2、点的坐标间的关系:如果点A、B横坐标相同,则 ‖ 轴;如果点A、B纵坐标相同,则 ‖ 轴。

3、将图形的纵坐标保持不变,横坐标变为原来的 倍,所得到的图形与原图形关于 轴对称;将图形的横坐标保持不变,纵坐标变为原来的 倍,所得到的图形与原图形关于 轴对称;将图形的横、纵坐标都变为原来的 倍,所得到的图形与原图形关于原点成中心对称。

第六章 一次函数

1、一次函数定义:若两个变量 间的关系可以表示成 ( 为常数, )的形式,则称 是 的一次函数。当 时称 是 的正比例函数。正比例函数是特殊的一次函数。

2、作一次函数的图象:列表取点、描点、连线,标出对应的函数关系式。

3、正比例函数图象性质:经过 ; >0时,经过一、三象限; <0时,经过二、四象限。

4、一次函数图象性质:

(1)当 >0时, 随 的增大而增大,图象呈上升趋势;当 <0时, 随 的增大而减小,图象呈下降趋势。

(2)直线 与轴的交点为 ,与 轴的交点为 。

(3)在一次函数 中: >0, >0时函数图象经过一、二、三象限; >0, <0时函数图象经过一、三、四象限; <0, >0时函数图象经过一、二、四象限; <0, <0时函数图象经过二、三、四象限。

(4)在两个一次函数中,当它们的 值相等时,其图象平行;当它们的 值不等时,其图象相交;当它们的 值乘积为 时,其图象垂直。

4、已经任意两点求一次函数的表达式、根据图象求一次函数表达式。

5、运用一次函数的图象解决实际问题。

第七章 二元一次方程组

1、二元一次方程及二元一次方程组的定义。

2、解方程组的基本思路是消元,消元的基本方法是:①代入消元法;②加减消元法;③图象法。

3、方程组解应用题的关键是找等量关系。

4、解应用题时,按设、列、解、答 四步进行。

5、每个二元一次方程都可以看成一次函数,求二元一次方程组的解,可看成求两个一次函数图象的交点。

第八章 数据的代表

1、算术平均数与加权平均数的区别与联系:算术平均数是加权平均数的一种特殊情况,(它特殊在各项的权相等),当实际问题中,各项的权不相等时,计算平均数时就要采用加权平均数,当各项的权相等时,计算平均数就要采用算术平均数。

2、中位数和众数:中位数指的是n个数据按大小顺序(从大到小或从小到大)排列,处在最中间位置的一个数据(或最中间两个数据的平均数)。众数指的是一组数据中出现次数最多的那个数据。

上面内容就是为您整理出来的5篇《八年级上册数学复习知识点》,希望可以对您的写作有一定的参考作用。

推荐访问:知识点 复习 数学 八年级上册数学复习知识点五篇 八年级上册数学复习知识点 数学八年级上册知识要点