下面是小编为大家整理的2022年用最小公倍数法巧解问题2篇(范文推荐),供大家参考。
产品配套问题是初中一元一次方程应用题中的典型题型,同时也是一类难点问题,学生在解决此类问题时往往不会找等量关系。为此,我在教学中用“最小公倍数法”帮助学生解决此类问题,学生对此印象深刻,在平时的解题中能很好地运用,化难为易。这次漂亮的小编为亲带来了2篇《用最小公倍数法巧解问题》,如果能帮助到您,将不胜荣幸。
什么叫最小公倍数 篇一
最小公倍数(Least Common Multiple,缩写L.C.M.),是数论中的一个概念。两个整数公有的倍数称为它们的公倍数,其中最小的一个正整数称为它们两个的最小公倍数。如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数,对于两个整数来说,指该两数共有倍数中最小的一个。计算最小公倍数时,通常会借助最大公约数来辅助计算。
基本定义几个数共有的倍数叫做这几个数的公倍数,其中除0以外最小的一个公倍数,叫做这几个数的最小公倍数。自然数a、b的最小公倍数可以记作[a,b],自然数a、b的最大公因数可以记作(a、b),当(a、b)=1时,[a、b]= a×b。
如果两个数是倍数关系,则它们的最小公倍数就是较大的数,相邻的两个自然数的最小公倍数是它们的乘积。
最小公倍数=两数的乘积/最大公约(因)数, 解题时要避免和最大公约(因)数问题混淆。
最小公倍数的适用范围:分数的加减法,中国剩余定理(正确的题在最小公倍数内有解,有唯一的解)。
因为,素数是不能被1和自身数以外的其它数整除的数;素数X的N次方,是只能被X的N-1以下次方,1和自身数整除。
所以,在求A,B,C,D,E,…,Z的最小公倍数时,只需要把这些数分解为素数的N次方之间的乘积后,取各素因子的最高次方的乘积,就是这些数的最小公倍数。
相关示例 篇二
因756=2*2*3*3*3*7,4400=2*2*2*2*5*5*11,19845=3*3*3*3*5*7*7,9000=2*2*2*3*3*5*5*5,这里有素数2,3,5,7,11.2最高为4次方16,3最高为4次方81,5最高为3次方125,7最高为2次方49,还有素数11.得最小公倍数为16*81*125*49*11=87318000.
上面内容就是为您整理出来的2篇《用最小公倍数法巧解问题》,希望对您的写作有所帮助,更多范文样本、模板格式尽在。