高中数学函数教案6篇

时间:2023-09-01 16:30:03 来源:网友投稿

高中数学函数教案第1篇教学分析教学目标:1、掌握幂函数的概念;熟悉α=1,2,3,?,-1时的1幂函数的图象和性质;能利用幂函数的性质解决实际问题。2、通过学生对情境的观察、思考、归纳、总结形成结论,下面是小编为大家整理的高中数学函数教案6篇,供大家参考。

高中数学函数教案6篇

高中数学函数教案 第1篇

教学分析

教学目标:

1、掌握幂函数的概念;熟悉α=1,2,3,?, -1时的1幂函数的图象和性质;能利用幂函数的性质 解决实际问题。

2、通过学生对情境的观察、思考、归纳、总结形成结论,培养学生的发现问题,解决问题的力。

二、教学重难点:

重点:幂函数的定义,图象与性质。

难点:幂函数的图象与性质。

三、教学准备:

教师:将幂函数 图象提前画在小黑板上。

四、教学导图:

情境引入 函数的概念幂 课堂练习

画出α=1,2,3,?,-1图象

师生交流归纳出五个具体幂函数的性质

课堂练习 例题分析 课堂小结 课后作业

教学设计

教学过程:

(一)教学内容:幂函数概念的引入。

设计意图:从学生熟悉的背景出发,为抽象出幂函数的概念做准备。这样,既可以让学生体会到幂函数来自于生活,又可以通过对这些案例的观察、归纳、概括、总结出幂函数的一般概念,培养学生发现问题、解决问题的能力。

师生活动:

教师:前面我们学习了指数函数与对数函数,这两类描述客观世界变化规律的数学模型。但是同学们知道,不是所有的客观世界变化规律都能用这两种数学模型来描述。今天,我们将学习新的一类描述客观世界变换规律的数学模型,也就是本书二点三节的幂函数。首先我们来看这样几个实际问题。第一个问题,如果老师现在准备购买单价为每千克1元的蔬菜W千克,老师总共需要花的钱P是多少?

教师:非常好,老师总共需要花的钱P=W。第二个问题,如果正方形的边长为a,那么正方形的面积S等于多少?

教师:回答的非常正确。面积S= . 下面的问题都很简单,请同学们跟上老师的思路。第三个问题,如果正方体的边长为a,那么他的体积V等于多少了?

教师:对。正方体的体积V= 。第四个问题,如果已知一个正方形面积等于S,那么这个正方形边长a等于多少了?

教师:非常正确。通过前面对指数幂的学习,根式与分数指数幂是可以相互转换的,所以根号下S就等于S的二分之一次方。那么我们的边长a= 。最后一个问题,认真听,某人 内骑自行车行进了1KM,那他的平均速度v等于多少?

教师:回答非常正确。因为我们知道v×t=s

所以v= = 。好,现在我们一起来观察黑板上这五个具体表达式,我们可以看出第一个表达式中P是W的函数,那第二个表达式了?

教师:非常好,第三个表达式了?

教师:第四个表达式了?

教师:第五个了?

教师:大家回答得非常正确。如果将上面的函数自变量全用x代替,函数值全用y来代替,那么我们可以得到第一个表达式为。。。。。。

教师:第二个表达式?

教师:第三个表达式?

教师:第四个表达式?

教师:
第五个表达式?

教师:回答的非常好。那现在请同学们仔细观察老师用x,y写成的这五个函数它们有哪些共同特征。等一下请同学起来给大家分享一下你观察的结果。给大家一分钟时间思考。(一分钟后。。。)有那个同学主动给大家分享一下你得出哪些共同特征?

教师:还有其他的共同特征吗?

教师:同学们都回答的非常正确哈。以后了我们就把具有这样性质的函数叫做幂函数。现在我们来给幂函数下个确的定义。一般的,他形如 的函数叫做幂函数,其中x是自变量,α是常数。同学们一定要注意,幂函数与前面学习的指数函数对数函数一样,都是形式化 定义,必须具有定义所给的形式,才能叫做幂函数,否者都不是幂函数。

(二)教学内容:
幂函数与指数函数的区别与联系。

设计意图:巩固幂函数的概念,让学生回顾前面学过的幂函数的特例,较少陌生感,并且用联系的观点,让学生比较幂函数与指数函数的区别,从而加深对幂函数概念的的理解与掌握。

师生活动:

教师:有的同学已经发现,今天学习的幂函数与前面学习的指数函数形式上有些相似,但是老师高手你们她们两个函数有着本质的区别。黑板上已经有五个幂函数的具体例子,请同学们说几个前面学习过的指数函数的例子。

教师:非常好。还有其他的吗?

教师:那现在我们通过观察黑板上的例子找到这两个函数本质上的区别与联系.同学们发现了吗?她们有哪些相同点?哪些不同点?

教师:不同了?

教师:回答非常正确哈。所以同学们一定不要混淆了这两类函数,记清楚那个函数的自变量在底数,那个函数的自变量在指数。我们已经明确给出了幂函数的定义,并且却别了幂函数与指数函数。现在我们来做一个练习。

(三)教学内容:课堂练习

设计意图:进一步巩固幂函数概念的理解.

师生活动:

教师:
练习,判断下列函数是否为幂函数 。请同学么能严格按照定义,自己动手做一下这几个题目。好。。。第一个是幂函数吗?

教师:为什么了?

教师:非常正确,第二个?

教师:很好,第三个了?

教师:到底是还不是?好好根据定义判断,也不要忘了形式间的等价转换。

教师:对的,它是一个幂函数,因为我们知道 ,所以根据定义就是一个幂函数。第四个了?

教师:因为我们知道幂前面的系数必须是1,而本题为2,所以不是。第五个了?


高中数学函数教案 第2篇

一、设计理念

注重发展学生的创新意识。学生的数学学习活动不应只限于接受、记忆、模仿和练习,倡导学生积极主动探索、动手实践与相互合作交流的数学学习方式。这种方式有助于发挥学生学习主动性,使学生的学习过程成为在教师引导下的“再创造”过程。我们应积极创设条件,让学生体验数学发现和创造的历程,发展他们的创新意识。

注重提高学生数学思维能力。课堂教学是促进学生数学思维能力发展的主阵地。问题解决是培养学生思维能力的主要途径。所设计的问题应有利于学生主动地进行观察、实验、猜测、验证、推理与交流等教学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。伴随新的问题发现和问题解决后成功感的满足,由此刺激学生非认知深层系统的良性运行,使其产生“乐学”的余味,学生学习的积极性与主动性在教学中便自发生成。本节主要安排应用类比法进行探讨,加深学生对类比法的体会与应用。

注重学生多层次的发展。在问题解决的探究过程中应体现“以人为本”,充分体现“人人学有价值的数学,人人都能获得必需的数学”,“不同的人在数学上得到不同的发展”的教学理念。有意义的数学学习必须建立在学生的主观愿望和知识经验基础之上,而学生的基础知识和学习能力是多层次的,所以设计的问题也应有层次性,使各层次学生都得到发展。

注重信息技术与数学课程的整合。高中数学课程应尽量使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。

另外,在数学教学中,强调数学本质的同时,也让学生通过适度的形式化,较好的理解和使用数学概念、性质。

二、教材分析

在教材中的地位与作用

幂函数在老教材中出现过,后来又删,现在又重新出现,当然两次在教材中的地位不一样,这次分量较轻,只要一课时,所以控制难度是值得注意的地方。幂函数选自必修1第2章第4节,是基本初等函数之一,是在学生系统学习了函数概念与函数性质之后,进入高中以来遇到的第三种特殊函数,是对函数概念及性质的应用,能进一步培养利用函数的性质(定义域、值域、图像、奇偶性、单调性)研究一个函数的意识。因而本节课更是一个对学生研究函数的方法和能力的综合提升。从概念到图象( ),利用这五个函数的图象探究其定义域、值域、奇偶性、单调性、公共点,概括、归纳幂函数的性质,培养学生从特殊到一般再到特殊的一般认知规律。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,以便能将该方法迁移到对其他函数的研究。

教材编排与课时安排

幂函数的教学按照《教参》要求一个课时完成。

通过这一课时学习幂函数的定义,图像及性质,从而进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为后面学习其他函数作好准备。

三、学习目标与任务

依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:

【知识目标】

1 了解幂函数的定义;

2 会画常见幂函数的图象,掌握幂函数的图象和性质;

3 初步学会运用幂函数解决问题,进一步体会数形结合的思想。

【技能目标】

1 通过引入、剖析、定义幂函数的过程,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法;

2 通过运用多媒体的教学手段,引领学生主动探索幂函数性质,体会学习数学规律的方法,体验成功的乐趣;

3 对幂函数的性质归纳、总结时培养学生抽象概括和识图能力;

4 运用性质解决问题时,进一步强化数形结合思想。

【情感目标】

1 通过生活实例引出幂函数概念,体会生活中处处有数学,激发学生的学习兴趣;

2 通过本节课的学习,进一步加深研究函数的规律和方法;提高学习能力;

3 养成积极主动,勇于探索,不断创新的学习习惯和品质;

4 树立学科学,爱科学,用科学的精神。

四、 学习重点、难点

重点:幂函数的定义、图像、性质及运用

难点:幂函数图象和性质的发现过程

五、学习者特征分析

从学生思维特点来和认知结构看,前面学生已经学习指数函数与对数函数,对新函数的学习已经有了一定的经验。一方面可以把本节课与前面的指数函数与对数函数进行类比学习,但另一方面本节课分类情况多,性质归纳困难,尤其是三个函数放在一起可能产生混淆。对进入高中半个学期的学生来说,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。

六、教法分析

学生思维活跃,求知欲强,但在思维习惯上还有待教师引导从学生原有的知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题。采用引导发现式的教学方法,充分利用多媒体辅助教学。

通过教师点拨,启发学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。

七、学习环境选择与学习资源设计

【学习环境选择】

1 Web教室;2 校园网;3 Internet。

【学习资源类型】

1 课件;2 专题学习网站;3 案例库;4 题库

【学习资源内容简要说明】

这堂课的学习资源主要是《幂函数》专题学习网站,网站的内容有:学习主题、学习目标、学法指导、准备知识、重点难点、学习资源、练习测试、展示讨论、学习拓展。

八、学习情境创设

【学习情境类型】

1 真实情境;2 问题性情境;3 虚拟情境;4 其他

【学习情境设计】

课堂上创设了学生熟悉的生活情景:购买水果、骑车等生活情境图;计算正方体的面积与体积的问题情境图;还有发挥互联网的交互功能,向学生提供交流、展示作品的空间;通过相关学习资源的链接,让学生在丰富的互联网的资源中学习、探究、应用“幂函数”。

九、学习活动组织形式选择

【自主学习设计】

1 抛锚式

(1)准备知识:

写出下列y关于x的函数解析式:

①正方形边长x、面积y

②正方体棱长x、体积y

③正方形面积x、边长y

④某人骑车x秒内匀速前进了1km,骑车速度为y

⑤一物体位移y与位移时间x,速度1m/s

(2)使用资源:

网页上的“准备知识”;网络图像:网络练习

(3)学生活动

自主进入网站课件浏览准备知识,小组讨论复习所学知识。采用网络作为评价的手段。

(4)教师活动

巡视课堂,参与学生的讨论。

2 支架式

(1)相应内容

了解本节课的“学习主题”、“学习目标”、提供“学法指导”。

(2)使用资源

网页上的“学习主题”、“学习目标”、“学法指导”和“重点难点”。

(3)学生活动

自主进入网站浏览,根据网页上的例子归纳出幂函数的一般形式,小组合作学习,互帮互助,采取网络评价。

(4)教师活动

巡视课堂,指导学生根据例子总结出幂函数的定义及其一般形式,引导学生应该注意的一些地方,并出题练习,巩固定义。

3 随机进入式

(1)相应内容

浏览学习资源、测试

(2)使用资源

网页上的“学习资源”:包括本地资源和远程链接、搜索引擎、实验工具,其中本地资源有:“学习课件”、“课外阅读、应用例谈”等栏目。还有网络练习。

(3)学生活动

自由选择喜欢的、重要的内容浏览,独立练习,然后小组交流,采取网络评价。

(4)教师活动

巡视指导,小结,评价。

【协作学习设计】

1 伙伴

(1)内容:根据几个问题情境,总结出幂函数的一般形式。

(2)使用资源:网页上的“重点难点”以及网络课件。

(3)分组情况:六人一小组。

(4)学生活动:根据网页上的例子总结出幂函数的一般形式;小组合作学习,互相帮组;网络评价。

(5)教师活动;巡视课堂,指导学生根据例子总结出幂函数的一般形式。

2 协同

(1)内容:根据幂函数的图像,总结出幂函数的性质,帮助识记这些性质。

(2)使用资源;网路课件。

(3)分组情况:六人一小组。

(4)学生活动:根据幂函数的图像找出幂函数的特有性质;小组合作学习,互帮互助。

(5)教师活动;巡视课堂,指导学生根据函数图像发现幂函数的性质。

3 辩论

(1)内容:幂函数的一般形式以及幂函数的性质

(2)使用资源:网络课件。

(3)分组情况:六人一小组。

(4)学生活动:根据讨论总结出幂函数的一般形式以及其性质;互相发表意见,也可辩论,说出自己的想法。

(5)教师活动;组织学生汇报讨论的结果。

【教学结流程设计】 SHAPE MERGEFORMAT

SHAPE MERGEFORMAT

【图符说明】

SHAPE MERGEFORMAT

十、教学过程

1 课前活动

(1)教师活动:同学们,上课前我们先来看两个实际问题:

①如果张红购买了每千克1元的蔬菜w千克,那么她需要付的钱数p是多少?


高中数学函数教案 第3篇

一.教学目标

知识技能:了解幂函数定义,掌握一些常见幂函数的图像及性质和一般幂函数第一象限内图像特点

过程与方法:通过形式来定义幂函数,比较幂函数和指数函数得出其特有的形式特点,观察图像归纳总结出其函数性质,数形结合找规律

情感、态度和价值观:函数图像直接反应函数性质,同样由函数性质也能大致画出其图像,对图像与性质之间的关系进行探索体会

二.重难点

重点:幂函数的定义,常见幂函数的图像和性质,一般幂函数第一象限的大致图像再利用其性质得到整体图像

难点:其一般的性质分析,再由性质得到一般图像

三.教学方法和用具

方法:归纳总结,数形结合,分析验证

用具:幻灯片,几何画板,黑板

四.教学过程

(幻灯片见附件)

设置问题情境,找出所得函数的共同形式,由形式给出幂函数的定义(幻灯片1?幻灯片2)(板书)

从形式上比较指数函数和幂函数的异同(幻灯片3)

利用定义的形式,判断所给函数是否是幂函数,并得出判断依据(幻灯片4)

画常见的三种幂函数的图像,再让学生用描点法画另两种,并用几何画板验证(幻灯片5)(几何画板)

用几何画板画出这五个幂函数的图像,观察图像完成书中幂函数的函数性质的表格,并分析得出更一般的结论(板书)(几何画板)

高中数学函数教案 第4篇

教学目标

知识目标:

(1)了解幂函数的概念;

(2)会画简单幂函数的图象,并能根据图象得出这些函数的性质;

(3)了解幂函数随幂指数改变的性质变化情况。

能力目标:

在探究幂函数性质的活动中,培养学生观察和归纳能力,培养学生数形结合的意识和思想。

情感目标:

通过师生、生生彼此之间的讨论、互动,培养学生合作、交流、探究的意识品质,同时让学生在探索、解决问题过程中,获得学习的成就感。

教学重点及难点

教学重点:

从具体幂函数归纳认识幂函数的一些性质并做简单应用。

教学难点:

引导学生概括出幂函数性质。

教学方法

归纳总结,数形结合,分析验证。

教学媒体

幻灯片、黑板

教学过程

教学基本流程 从实例观察引入课题→构建幂函数的概念→

画出代表性函数图像→探索简单的幂函数性质→总结一般性研究方法→应用举例和课堂练习→小结与作业

(一)实例观察,引入新课

(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付P = W元, P是W的函数。

(y=x)?

(2)如果正方形的边长为 a,那么正方形的面积S=a2 ,S是a的函数。

? (y=x2)?

(3)如果立方体的边长为a,那么立方体的体积V =a3 ,S是a的函数。

? (y=x3)

(4)如果一个正方形场地的面积为 S,那么正方形的边长a=s1∕2, a是S的函数。(y=x1∕2)

(5)如果某人 t s内骑车行进1 km,那么他骑车的平均速度v=t-1, V是t的函数。(y=x-1)?

问题一:以上问题中的函数具有什么共同特征?

学生反应:底数都是自变量,指数都是常数。

设计意图 引导学生从具体的实例中进行总结,从而自然引出幂函数的一般特征.

由学生讨论、总结,得出上述问题中涉及到的函数,都是形如y=xa的函数,其中x是自变量,α是常数。

(二)类比联想,探究新知

幂函数的定义:
一般地,函数y=xa叫做幂函数,其中x为自变量?ɑ 为常数。

注意:幂函数的解析式必须是y = xa的形式,其特征可归纳为“系数为1只有1项”。

(让学生判断y=2x3 y=x2+x y=_ y=x-2等是否为幂函数)

例题已知函数 是幂函数,求m的值。

设计意图 加深学生对幂函数定义和呈现形式的理解。

幂函数的图像与简单性质

同前面的指数函数和对数函数一样,先画出函数的图像,再由图像来研究幂函数的相关性质(定义域,值域,单调性,奇偶性,定点)。

找出典型的函数作为代表:

y=x y=x2 y=x3 y=x-1

在幻灯片上给出以上五个函数的图像,引导学生观察其性质(定义域,值域,单调性,奇偶性)

让学生自主动手,在同一坐标系中画出这5个函数的图像,并观察图像

问题二:所有图像都过第几象限,所有图像都不过第几象限,为什么?

学生反应:都过第一象限,而都不过第四象限,因为当x>0时所有幂函数都有意义,且函数值都为正。

问题三:所有图像都过哪些点,为什么?

学生反应:都过点(1,1),因为1的任何指数幂都为1。

问题四:对于原点,什么样的幂函数过,什么样的幂函数不过,为什么?

学生反应:指数为正过,为负则不过,因为负指数幂可以化成分数形式,分母不能为零,所以在原点没有意义。

高中数学函数教案 第5篇

教学设计

基本信息 名称 《幂函数图象和性质》 课时 1 所属教材目录 人教A版 教材分析 ?《幂函数》选自高一数学新教材必修1第2章第3节。幂函数是继指数函数和对数函数后研究的又一基本函数。通过本节课的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待以前已经接触的函数,进一步确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,因而本节课更是一个对学生研究函数的方法和能力的综合提升。? 学情分析

(1)学生已经接触过函数,已经确立了利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识?,已初步形成对数学问题的合作探究能力。?

(2)虽然前面学生已经学会用描点列表连线画图的方法来绘制指数函数,对数函数图像,但是对于幂函数的图像画法仍然缺乏感性认识。?

(3)?学生层次参次不齐,个体差异比较明显。

教学目标 知识与能力目标 知道幂函数的概念,会研究幂函数的性质和图像

掌握幂函数在第一象限的性质

过程与方法目标 学生在积极参与具体幂函数的性质研究实践活动中,培养学生观察和归纳能力,与此同时,在解决具体问题的过程中,提高学生对具体问题的前一以及综合能力

情感态度与价值观目标 渗透辩证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法分析问题和解决问题的能力。

教学重难点 重点 幂函数的性质和图像

难点 幂函数y= x 的图像的规律,幂函数性质的总结

教学策略与 设计说明 讲、议、练结合,启发式 教学过程 教学环节(注明每个环节预设的时间) 教师活动 学生活动 设计意图 问题1

问题2

问题3

问题4

问题5 幻灯片演示问题:写出下列y关于x的函数解析式:

正方形边长x,面积y

正方体棱长x,体积y

正方形面积x,边长y

某人骑车x秒内匀速前进了1km,骑车速度y

一物体位移y与位移时间x,速度1m/s

教师将解析式写成指数幂形式,以启发学生归纳投影演示定义。

这五个函数关系是从结构上看有什么共同的特点?用x表示自变量,y表示函数值

投影幂函数的定义,揭示课题。

有了幂函数的概念接下来研究什么?通过什么方式研究,类比指数函数的对数函数的学习。

投影:

例1:观察在同一直角坐标系中下些列函数的图像,并根据图像将发现的性质填入表格:

y=x y=x y=x y=x y=x

探究:①应明确函数的定义域?(写成根式的形式)

观察定义域对奇偶性的影响

注意指数对图像特征的影响

投影显示表格

高中数学函数教案 第6篇

教学目标:

通过实例,理解幂函数的概念;能区分指数函数与幂函数;会用待定系数法求幂函数的解析式。

教学重难点:

重点 从五个具体幂函数中认识幂函数的一些特征.

难点 指数函数与幂函数的区别和幂函数解析式的求解.

教学方法与手段:

采用师生互动的方式,在教师的引导下,学生通过思考、交流、讨论,理解幂函数的定义,体验自主探索、合作交流的学习方式,充分发挥学生的积极性与主动性.

利用投影仪及计算机辅助教学.

教学过程:

函数的完美追求:对于式子 ,

如果 一定,N随 的变化而变化,我们建立了指数函数 ;

如果 一定, 随N的变化而变化,我们建立了对数函数 .

设想:如果 一定,N随 的变化而变化,是不是也应该确定一个函数呢?

创设情境

请大家看以下问题:

思考:以上问题中的函数 有什么共同特征?

引导学生分析归纳概括得出:(1)都是以自变量 x为底数;(2)指数为常数;(3)自变量x前的系数为1;(4)只有一项.上述问题中涉及的函数,都是形如 的函数.

探究新知

一、幂函数的定义

一般地,形如 的函数称为幂函数,其中 是自变量, 是常数.

中 前面的系数是1,后面没有其它项.

小试牛刀

判断下列函数是否为幂函数:

(1) ,

思考:幂函数 与指数函数 有什么区别?

二、幂函数与指数函数的对比

推荐访问:教案 函数 高中数学 高中数学函数教案6篇 高中数学函数教案(集合6篇) 高中函数与集合