七年级上册数学整式加减教案第1篇教学目标知识与能力:掌握去括号法则,运用法则,能按要求正确去括号.过程与方法:经历类比带有括号的有理数的运算,探究、发现去括号时的符号变化的规律,归纳出去括号法则,培养下面是小编为大家整理的七年级上册数学整式加减教案6篇,供大家参考。
七年级上册数学整式加减教案 第1篇
教学目标
知识与能力:掌握去括号法则,运用法则,能按要求正确去括号.
过程与方法:经历类比带有括号的有理数的运算,探究、发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.
情感、态度与价值观:通过参与探究活动,培养学生主动探究、合作交流的意识,严谨治学的学习态度,体会合作与交流的重要性.
教学重难点
重点:去括号法则,准确应用法则将整式化简.
难点:括号前面是“-”号,去括号时括号内各项都变号.
教学过程
一、复习旧知
化简
-(+5) +(+5) -(-7) +(-7)
去括号
① -(3- 7) ② +(3- 7)
二、探索新知
想一想:根据分配律,你能为下面的式子去括号吗?
①+(- a+c) ② - (- a+c)
③ +(a-b+c) ④ -(a-b+c)
观察这两组算式,看看去括号前后,括号里各项的符号有什么变化?
去括号法则:
括号前是“+”号的,把括号和它前面的“+”号去掉,
括号里各项都不改变符号;
括号前是“ - ”号的,把括号和它前面的“ - ”号去掉,
括号里各项都改变符号。
顺口溜:
去括号,看符号;是“+”号,不变号;是“-”号,全变号。
三、巩固练习:
(1)去括号:
a+(b-c)= _______ a- (b-c)= ______
a+(- b+c)= _______ a- (- b+c)= ______
(2)判断正误
a-(b+c)=a-b+c ( )
a-(b-c)=a-b-c ( )
2b+(-3a+1)=2b-3a-1 ( )
3a-(3b-c)=3a-3b+c ( )
四、例题学习:为下面的式子去括号
+3(a - b+c) - 3(a - b+c)
五、课堂检测:
去括号:
① 9(x-z) ②-3(-b+c) ③ 4(-a+b-c) ④ -7(-x-y+z)
六、课堂小结
去括号时应注意的事项:
(1)、去括号时应先判断括号前面是“+”号还是“-”号。
(2)、去括号后,括号内各项符号要么全变号,要么全不变号。
(3)、括号前面是“-”号时,去掉括号后,括号内的各项都要改变符号,不能只改变第一项或前几项的符号。
七、布置作业:
必做题:课本70页习题 第2,3题
选做题:课本70页 习题 第4题
七年级上册数学整式加减教案 第2篇
第1课时合并同类项
了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项.
能先合并同类项化简后求值.
阅读教材P62~65,思考下列问题.
什么是同类项?怎样合并同类项?
知识探究
把多项式中的同类项合并成一项叫做合并同类项.
合并同类项的法则:系数相加,字母和字母指数不变.
自学反馈
若2x2yn与-3xmy4是同类项,则m=2,
判断下列各题中的两个项是否是同类项,如果不是,请说明原因:
(1)4与-12;(是)
(2)32与a2;(不是,原因略)
(3)2x与2x;(不是,原因略)
(4)3mn与3mnp;(不是,原因略)
(5)2πr与-3x;(不是,原因略)
(6)3a2b与(不是,原因略)
合并同类项.[来源]
(1)3x2-2xy+y2-x2+2xy;
(2)2a2b-3a2b+12a2b;
(3)a3-a2b+ab2+a2b-ab2+b3;
(4)4x2-8x+5-3x2+
解:(1)2x2+(2)(3)a3+(4)x2-2x+
(1)同类项与字母的顺序无关;(2)合并同类项中系数求和时注意符号问题.
活动1小组讨论
例1合并同类项.
(1)4a2+3b2+2ab-4a2-3b2;
(2)3x-2x2+5+3x2-2x-5;
(3)a3+a2b+ab2-a2b-ab2-b3;
(4)6a2-5b2+2ab+
解:(1)(2)x2+(3)(4)
例2求多项式5x2+4x-6x2-x+2x2-3x-1的值,其中
解:原式当x=-3时,原式
先化简,再带值.
例3(1)水库水位第一天连续下降了a h,每小时平均下降2 cm;第二天连续上升了a h,每小时平均上升 cm,这两天水位总的变化情况如何?
(2)某商店原有5袋大米,每袋大米为x 上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?
解:(1)把下降的水位变化量记为负,上升的水位变化量记为正.第一天水位的变化量是-2a cm,第二天水位的变化量是
两天水位的总变化量(单位:cm)是
-2a+(-2+)
这两天水位总的变化情况为下降了
(2)把进货的数量记为正,售出的数量记为负.
进货后这个商店共有大米(单位:kg)
5x-3x+4x=(5-3+4)
活动2跟踪训练
已知-2an-1b4与a2bm+1是同类项,则
合并同类项.
(1)-ayb-4a2b+4ab2+2a2b;
(2)a2-2-3a+
解:(1)-2a2b+(2)
先化简,再求值:
13x3-2x2+23x3+3x2+5x-4x+7,其中
解:原式=x3+x2+x+当时,原式
活动3课堂小结
同类项:(1)所含字母相同;(2)相同字母的指数也相同.
合并同类项:把多项式中的同类项合并成 一项.
合并同类项法则.
第2课时去 括号
探究去括号法则,并且利用去括号法则将整式化简.
发现去括号时的符号变化的规律,归纳出去括号法则.
阅读教材P65~67,思考下列问题:如何去掉括号,分几种情况?
知识探究
去括号时,如果括号外的符号是正号,去括号后原括号内各项的符号与原来的符号相同;如果括号外的符号是负号,去括号后原括号内各项的符号与原来的符号相反.
自学反馈
去括号:
(1)-(-a+b)+(-c+d)=a-b-c+d;
(2)x-3(y-1)=x-3y+3;
(3)-2(-y+8x)
下列去括号过程是否正确?若不正确,请改正.
(1)a-(-b+c-d)=a+b+c-d;(不正确)a+b-c+d;
(2)a+(b-c-d)=a+b+c+d;(不正确)a+b-c-d;
(3)-(a-b)+(c-d)=-a-b+c-d;(不正确)-a+b+
化简a+b+(a-b)的最后结果是(C)
+
去括号有两种情况最容易出错:(1)当括号前面含有因数时,根据乘法分配律,这个因数要与括号里面的各项都相乘,不要漏乘;(2)当括号前面是“-”号时,括号里面的各项符号都要改变.
活动1小组讨论
例去括号,再合并同类项:
(1)x-(3x-2)+(2x+3);
(2)(3a2+a-5)-(4-a+7a2);
(3)(2m-3)+m-(3m-2);
(4)3(4x-2y)-3(-y+8x).
解:(1) (2)-4a2+(3)(4)[来源:学_科_网]
活动2跟踪训练
下列去括号中,正确的是(C)
(2a-1)=a2-2a-1
+(-2a-3)=a2-2a+3
[5b-(2c-1)]=3a-5b+2c-1
(a+b)+(c-d)=-a-b-c+d
当a=5时,则(a2-a)-(a2-2a+1)的值为(A)
去括号,并合并同类项:
(1)-(5m+n)-7(m-3n);
(2)-2(xy-3y2)-[2y2-(5xy+x2)+2xy].
解:(1)-12m+(2)xy+4y2+
活动3课堂小结
去括号法则.
第3课时整式的加减
进一步熟悉掌握去括号、合并同类项运算.
掌握整式加减运 算在实际问题中的应用.
能进行整式的加减混合运算,能准确处理括号问题.
阅读教材P67~69,思考下列问题.
如何进行整式的运算.
知识探究
整式加减混合运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.
自学反馈
化简下列各题:
(1)-3(2x-y)-2(4x+12y)+2 009;
(2)-[2m-3(m-n+1)-2]
解:(1)-14x+2y+(2)m-3n+
去一层括号合并一次同类项,不要只去括 号,到最后一次合并同类项,那样式子做起来比较复杂.
活动1小组讨论
计算:
(1)3(ab-2c)-5(-ab-c);
(2)2x2-3[3x-2(-x2+2x-1)-4].
解:(1)(2)-4x2+3x+
先化简,再求值:-3[y-(3x2-3xy)]-[y+2(4x2-4xy)],其中x=-3,
解:原式当x=-3,y=13时,原式
活动2跟踪训练
化简求值.
(1)2x2-[x2-2(x2-3x-1)-3(x2-1-2x)],其中x=12;
(2)2(ab2-2a2b)-3(ab2-a2b)+(2ab2-2a2b),其中a=2,
解:(1)原式当x=12时,原式
(2)原式当a=2,b=1时,原式
已知M=3x2-2xy+y2,N=2x2+xy-3y2,求:
(1)M-N;(2)M+
解:(1)x2-3xy+(2)
活动3课堂小结
整式加减混合运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.
七年级上册数学整式加减教案 第3篇
教学目标和要求:
理解同类项的概念,在具体情景中,认识同类项。
通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。
初步体会数学与人类生活的密切联系。
教学重点和难点:
重点:理解同类项的概念。
难点:根据同类项的概念在多项式中找同类项。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、创设问题情境
⑴5个人+8个人=
⑵5只羊+8只羊=
⑶5个人+8只羊=
(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务。学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法。)
2、观察下列各单项式,把你认为相同类型的式子归为一类。
8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,,,2xy2。
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。
要求学生观察归为一类的式子,思考它们有什么共同的特征?
请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)
二、讲授新课:
同类项的定义:
我们常常把具有相同特征的事物归为一类。8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类。8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2。
像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项(similar terms)。另外,所有的常数项都是同类项。比如,前面提到的、0与也是同类项。
通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项。(板书课题:同类项。)
(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结。)
板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项。
例题:
例1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x与3mx是同类项。
( ) (2)2ab与-5ab是同类项。
( )
(3)3x2y与-yx2是同类项。
( ) (4)5ab2与-2ab2c是同类项。
( )
(5)23与32是同类项。
( )
(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项。一部分学生可能会单看指数不同,误认为不是同类项。)
例2:游戏:
规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。[来源:学|科|网Z|X|X|K]
要求出题同学尽可能使自己的题目与众不同。
可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的程式化做法,并由编题学生指定某位同学回答,可使课堂气氛活跃,学生透彻理解知识,这种形式适合初中生的年龄特征。学生通过一定的尝试后,能得出只要改变单项式的系数,即可得到其同类项,实际是抓住了同类项概念中的两个“相同”,从而深刻揭示了概念的内涵。)
例3:指出下列多项式中的同类项:
(1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+xy2-yx2。
解:(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项。
(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项。
例4:k取何值时,3xky与-x2y是同类项?
解:要使3xky与-x2y是同类项,这两项中x的次数必须相等,即 k=2。所以当k=2时,3xky与-x2y是同类项。
例5:若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项。
(1)(s+t)-(s-t)-(s+t)+(s-t);
(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t。
解:略。
(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪打出书面解答,为合并同类项作准备。例4让学生明确同类项中相同字母的指数也相同。例5必须把(s-t)、(s+t)分别看作一个整体。)
(通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力。)
五分钟测试:
1、请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?
(学生先在课本上解答,再回答,若有错误请其他同学及时纠正。)
三、课堂小结:[
①理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项。
②这堂课运用到分类思想和整体思想等数学思想方法。
③学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础。
(课堂小结不仅仅是知识点的罗列,应使知识条理化、系统化,应上升到数学思想方法的总结与运用.采用学生相互补充完善,教师适时点拨的课堂小结方式,可训练学生的归纳能力和表达能力,提高学生学习的积极性和主动性。)
四、课堂作业:
若2amb2m+3n与a2n-3b8的和仍是一个单项式,则m与 n的值分别是______。
板书设计:
教学后记:
建立在学生的认知发展水平上,从学生已有的生活经验出发,通过小组讨论,把一些实物进行分类,从而引出同类项这个概念,并通过练习、游戏、合作交流等学习活动让学生更清楚地认识同类项。在整堂课的教学活动中充分体现学生的主体性,向学生提供充分参与数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,培养学生动手、动口、动脑的能力和学生的合作交流能力。
七年级上册数学整式加减教案 第4篇
教学目的:
知识与技能目标:
会进行整式加减的运算,并能说 明其中 的算理,发 展有条理的思考及其语言表达能力。
过程与方法:
通过探索 规律的问 题,进一步体会符号表示的意义,
通过 对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面.
教学重点、难点:
重点:整式加减的运算。
难点:探索规律的猜想。
授课时间:
教学过程:
Ⅰ.创设现实情景,引入新课
摆第1个小屋子需要5枚棋子,摆第2个需要 枚棋 子,摆 第3个需要 枚棋子。
按照这样的方式继续摆下去。
(1)摆第10个这样的小屋子需要 枚棋子
(2)摆第n个这样的小屋子需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问 题吗?小组讨论。
Ⅱ.根据现实情景,讲授新课
例题讲解:
练习:1、计算:
(1)(11x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
(3)x-(1-2x+x2)+(-1-x2) (4)(8x y-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A (2)A-3B
Ⅲ.做一做
P11 随堂练习
Ⅳ.课时小结
要善于在图形变化中发现规律,能熟练的对整式加减进行运算。
Ⅴ.课后作业
P12习题:1(2)、(3)、(6),2。
板书设计:
第二节 整式的加减(2)
一、旅游中发现的几何体
二、生活中常见的几何体
教学后记
七年级上册数学整式加减教案 第5篇
(一)教材所处的地位
人教版《数学》七年级上册第二章,本章由数到式,承前启后,既是有理数的概括与抽象,又是整式乘除和其他代数式运算的基础,也是学习方程、不等式和函数的基础。
(二)单元教学目标
(1)理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
(2)理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。
(3)理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算律性质在整式的加减运算中仍然成立。
(4)能分析实际问题中的数量关系,并列出整式表示 .体会用字母表示数后,从算术到代数的进步。
(5)渗透数学知识来源于生活,又要为生活而服务的辩证观点;通过由数的加减过渡到整式的加减的过程,培养学生由特殊到一般的思维;体会整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美。
(三)单元教学的重难点
(1)重点:理解单项式、多项式的相关概念;熟练进行合并同类项和去括号的运算。
(2)难点:准确地进行合并同类项,准确地处理去括号时的符号。
(四)单元教学思路及策略
(1)注意与小学相关内容的衔接。
(2)加强与实际的联系。
(3)类比“数”学习“式”,加强知识的内在联系,重视数学思想方法的渗透。
(4)抓住重难点、加强练习。
(五)学生学习易错点分析:
(1)忽视单项式的定义,误认为式子 是单项式。
(2)忽视单项式系数的定义,误认为 的系数是
(3)忽视单项式的次数的定义,误认为3a的次数是
(4)忽视多项式的定义,误认为 是单项式。
(5)忽视多项式的定义,误认为 的次数是
(6)忽视多项式的项的定义,误认为多项式 的项分别为 .
(7)把多项式的各项重新排列时,忽视要带它前面的符号。
(8)忽视同类项的定义,误认为2x3y4与-y4x3不是同类项。
(9)合并同类项时,误把字母的指数也相加。
(10) 去括号时符号的处理。
(11)两整式相减时,忽略加括号。
(六)教学建议:
(1)了解整式并学好合并同类项的关键是什么?
整式的加减法,实际上就是合并同类项,同类项的概念以及合并同类项的方法,是本章的重点,而同类项及其合并是以单项式为基础的,所以,单项式的概念或意义是完成合并的关键。
(2)单项式与多项式有什么联系与区别?
教材中先讲单项式、后讲多项式,然后概括为单项式、多项式统称为整式,对于单项式的系数,仅限于数字系数(单项式中的数字因数),这点务求仔细体会,切不可加以引申,而多项式没有系数;对于次数,单项式的次数指,所有字母的指数之和,而多项式的次数是多项式中次数最高的项(单项式)的次数,需要加以注意的问题是:单项式的系数,包括它前面的符号,不要把常数 作为字母,单项式x的系数是1,且单独一个数(零次单项式)或一个字母,也是单项式,对于0也是一个单项式;多项式的每一项都应包含它前面得符号;单项式和多项式得分母中不能含有字母。
(3)学习合并同类项的方法;
先把同类项分别作上记号,然后根据合并同类项的法则进行合并,合并后把多项式按某一字母降幂或升幂排列;当多项式中同类项的系数互为相反数时,合并后为0;
(4)什么是合并同类项中要加以注意的“两同”?
合并同类项是整式加减的基础,深入理解同类项的概念,又是掌握合并同类项的关键,教材中通过一个探究问题(三个填空题)的引入,进行比较、归纳,从而得出判断同类项的 “两同”标准:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项。几个常数项也是同类项,同类项至少有两个,单项式不叫同类项。
(5)其它注意事项:
①整式中,只含一项的是单项式,否则是多项式。分母中含有字母的代数式不是整式,当然也不是单项式或多项式。
②单项式的次数是所有字母的指数之和;多项式的次数是多项式中最高次项的次数。
③单项式的系数包括它前面的符号,多项式中每一项的系数也包括它前面的符号。
④去括号时,要特别注意括号前面是“-”号的情形。
(七)课时安排:
第1课时 单项式
第2课时 多项式
第3课时 整式的加减(1)------合并同类项
第4课时 整式的加减(2)------去括号
第5课时 整式的加减(3)------一般步骤
第6课时 整式的加减(4)------化简求值
第7课时 数学活动
第8课时 复习课
七年级上册数学整式加减教案 第6篇
一、三维目标。
(一)知识与技能。
能运用运算律探究去括号法则,并且利用去括号法则将整式化简。
(二)过程与方法。
经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。
(三)情感态度与价值观。
培养学生主动探究、合作交流的意识,严谨治学的学习态度。
二、教学重、难点与关键。
1、重点:去括号法则,准确应用法则将整式化简。
2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。
3、关键:准确理解去括号法则。
三、教具准备。
投影仪。
四、教学过程,课堂引入。
利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
五、新授。
现在我们来看本章引言中的问题(3):
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为()小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120()千米,因此,这段铁路全长为100t+120()千米 ①
冻土地段与非冻土地段相差100t—120()千米 ②
上面的式子①、②都带有括号,它们应如何化简?
利用分配律,可以去括号,合并同类项,得:
100t+120()=100t+120t+120()=220t-60
推荐访问:整式 教案 加减 七年级上册数学整式加减教案6篇 七年级上册数学整式加减教案(精选6篇) 七年级上册数学整式的加减教案