下面是小编为大家整理的人教版数学九年级上册教案(五篇)【优秀范文】,供大家参考。
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么我们该如何写一篇较为完美的教案呢?这里我给大家分享一些最新的教案范文,方便大家学习。
人教版数学九年级上册教案篇一
1.使学生掌握百分数、小数互化的方法,并能正确的互化。
2.在学习互化的过程中使学生认识到这二者之间的内在联系,为后面学习百分数的计算和应用打下基础。
3.在学习的过程中培养学生的分析思维和抽象概括能力。
教学重难点
使学生理解掌握百分数和小数互化的方法。
教学工具
课件
教学过程
一、活动(一)复习准备
1、课件出示复习题。
张宇跳绳个数是陈聪的1.37倍。
王志祥跳绳个数是陈聪的6/5.
刘星宇跳绳个数是陈聪的137.5%.
思考:这三个人谁跳得最多,怎么比较?
2.引入新课。
在生产、工作和生活中进行统计和分析时,为了便于统计和比较,我们常用百分数表示一些数据。除了用百分数表示,还可以用什么数表示?
这节课我们就来学习百分数和小数的互化以及百分数和分数的互化。
二、活动(二)百分数和小数的互化。
(1)回忆小数化分数的过程。
(2)小数要化成百分数,分母应是多少?怎样使它的分母变成100呢?
三、活动(三) 百分数化成小数
1、例1:把0.25,1.4,0.123化成百分数。
①小数化百分数分几步进行?
②学生回答,教师板书:0.25=25/100=25%
③1.4怎样化成分母是100的分数?根据什么?
④“做一做”:把下面各小数化成百分数。
0.38 1.05 0.055 3
⑤观察例1的各小数,化成百分数后发生了怎样的变化?
你所做的练习的各数是不是也发生了同样的变化?这一变化符合什么?
⑥现在你能很快地把下列小数化成百分数吗?(口答)
2.5 0.785 0.16
2、例2:把27%,135%,0.4%化成小数。
学生自己试做,学生总结方法
①说一说百分数化小数的方法。
②观察百分数化成小数发生了什么变化?
③把下面各百分数化成小数
15% 80% 3.5%
3、小结。
通过刚才的分析、归纳,谁能说一说百分数和小数怎样互化?
四、巩固与提高
1、p80“做一做”
2、练习十九的第2题
五、作业
练习十九的第1题
课后习题
练习十九的第1题
人教版数学九年级上册教案篇二
教学目标
1、认识扇形统计图的特点和作用;
2、能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。
3、遇到不理解或不懂的地方,用下划线和?标记出来。便于交流时提出。
4、自己的建议、体会、方法可以在旁边作好批注。
教学重难点
1、认识扇形统计图的特点和作用;
2、能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。
教学工具
课件
教学过程
一、快乐自学
你喜欢运动吗?调查本班同学喜欢的运动项目。根据下面的统计图:
六(1)班最喜欢的运动项目统计图
1、说一说:从这幅统计图中你能获取哪些信息?
2、我知道这是一幅( )统计图,它的特点是( )。
3、我最喜欢的运动项目是( ),它占全班人数的百分比是( )。要想清楚地知道百分比这样的信息,我们可以选用( )统计图。
4、一起来认识扇形统计图吧!自学教材第107页,注意拿笔勾画哦!.
(1)计算出各运动项目占全班人数的百分比。
(2)从扇形统计图中,你又能获取哪些信息?
(3)你还能提出什么问题?
二、合作探究。
讨论交流:扇形统计图是怎样来表示各个数据的?它有什么特点?
1、我发现扇形统计图中的( )代表单位“1”,表示( ),各个扇形面积表示( ),扇形的大小说明了( )。
2、扇形统计图的特点是( )。
3、生活中,你还从()见到过扇形统计图?
三、学习小结
我们已曾经学过的统计图有条形统计图,它的特点是();还有()统计图,它的特点是不但可以表示各部分数量的多少,而且还可以清楚地看出数量的增减变化情况。我们今天又学习了扇形统计图,它的特点是(),
四 、智勇大闯关,我是小擂主
1、第一关:小练兵。
完成练习二十五的第1、2题。
2、第二关
完成练习二十五的第4题。
五、学后反思
1、我的收获:
2、自我评价:我对我的课堂表现( ),因为(
)。
六、作业
1、完成教材p107的“做一做”.
2、练习二十五的第3题
课后习题
1、完成教材p107的“做一做”。
2、练习二十五的第3题。
人教版数学九年级上册教案篇三
教学目标
知识与技能目标:理解生活中的百分率,掌握求百分率的方法,能正确求出百分率。
过程与方法目标:通过自主探究、合作交流,理解常用百分率的含义及计算方法。
情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并服务于生活的数学思想。
教学重难点
教学重点:理解生活中常见的百分率的含义。
教学难点:正确计算常见的百分率。
教学过程
一、创设情境,探究导入
1、课件出示
看图,回答下面的问题。
(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?
(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?
2、百分数的意义
我们班有36%的学生参加了美术兴趣小组。
世界总人口中大约有50%的人口年龄低于25岁。
一瓶农夫果园饮料中果汁含量大约是10%。
我们班学生的近视率是45%。
3、小刚做了10道题,错了2道
做对的题数占总题数的几分之几?
做错的题数占总题数的几分之几?
做对的题数占总题数的百分之几?
做错的题数占总题数的百分之几?
求a是b的百分之几和求a是b的几分之几方法是相同的,都是:a÷b
4、六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几? 六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的 百分之几?
学生独立思考、同桌交流:尝试计算,得出结论。
5、谈话,导入新课
在我们的日常生活中像这样的百分率还有很多,如发芽率、及格率、出米率等,它可以帮助我们解决生活中的一些实际问题。
下面,让我们共同走进百分率,探究它的计算方法(板书:百分率的计算)。
二、学习新知
1、教学例1——在具体情境中认识百分率,探究计算方法
(1)出示例1:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。六年级学生的达标率是多少?
(2)学生读题,分析题意,思考达标率的含义,尝试计算。
(3)指名板演并交流思维过程,集体订正。
(4)教师小结
指导学生明确达标率是百分率的一种,它的含义即“达标人数是测试总人数的百分之几”,与“求一个数是另一个数的几分之几”问题的计算方法相同,因此用“达标人数÷测试总人数”就行;因为百分率是百分数,计算结果应是百分数形式,所以完整的计算方法应是“达标率=达标人数 除以 测试总人数 ×100%”。
谈话:《国家学生体质健康标准》要求小学生体质健康达标率不得低于60%,通过计算、比较,说明我们班学生的体质是达到健康标准的,这也是百分率的价值所在。
2、教学例2——掌握百分率计算方法,认识百分率的价值
(1)出示例2:科学课上,五(2)班同学做的种子发芽实验结果如下:
种子名称 实验种子总数 发芽数 发芽率
绿豆 80 78
花生 50 46
大蒜 20 19
(2)学生读题,弄清已知条件和问题,讨论发芽率的含义,尝试计算各种种子的发芽率。
(3)指名学生交流发芽率的含义及计算方法,板演算式,集体订正。
(4)比较,认识发芽率在生产实践中的价值。
通过计算我们发现哪种种子的发芽率要高一些?哪种要低一些呢?讲解:发芽率对于农民种田是十分重要的,他们需要根据发芽率的高低,决定种子品种和播种面积。
3、小组合作探究,寻找生活中的百分率,总结百分率计算公式。
(1)谈话,明确合作学习要求:在实际生活中,像命中率、达标率、发芽率等这样的百分率还有很多,请小组四位同学在一起开动脑筋、积极协作,寻找生活中的百分率,写出它的计算方法,比一比哪个小组找得最多。
(2)小组合作,寻找生活中的百分率,探究其含义及其计算方法,写出计算公式,教师巡视了解小组合作情况及结果。
(3)小组代表汇报本组收集的百分率,阐明其含义,在投影仪上展示计算方法,师生共同订正。
(4)罗列不同百分率的计算方法,引导学生发现共同点,总结百分率的计算公式:
?率= 量 ? 除以总数量 ×100%
(5)举实例,加深对百分率计算公式的认识,掌握百分率计算方法。
4、某县种子推广站,用300粒玉米种子作发芽试验,结果发芽的种子有288粒。求发芽率。
5、探讨、交流:生活中的百分率哪些可能大于100%?哪些只会等于或小于100%? 三、巩固练习
1、填一填
①稻谷的出米率是85%,是指( )
的千克数占( )的千克数的百
分之八十五。
②甲数是乙数的 4/5 ,乙数是甲数的
( )%。
③20÷( )= 4/8 =( )︰24=( )%
2、选一选:
种一批树,活了100棵,死了1棵,求成活率的正确算式是( )。
一根钢管截成2段,第一段长 米,第二段占全长的60%,这两段钢管比较( )。
布置作业
1、小组合作,整理生活中常见的百分率的计算方法,写在数学书第86页上。
2、完成练习二十第2、3、4题。
四、课堂小结
今天你有什么收获?生谈收获。
人教版数学九年级上册教案篇四
教学目标
1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。
2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。
3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。
教学重难点
教学重点:理解比的基本性质,掌握化简比的方法 。
教学难点:化简比与求比值的不同。
教学过程
一、创设情境,生成问题
师:同学们,昨天我们刚刚学习了有关比的意义,谁能说说
1、什么叫比?
2、比与除法和分数有什么关系?
(生自由发言)我们以前还学过了分数的基本性质和除法中的商不变性质,还记得吗?谁来说一说?
课前准备:
同桌互相说一说:
1.除法中商不变的性质是什么?你能举例说明吗?
2.举例说明分数的基本性质。
二、探索交流,解决问题
1、猜测比的基本性质
除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比有没有基本性质?如果有,这条基本性质的内容是什么?(学生猜测,并相互补充)
2、验证猜测:学生以四人小组为单位,讨论研究。
汇报(预设):
① 6÷8=(6×2)÷(8×2)=12÷16
6:8=(6×2)∶(8×2)=12:16
6:8=(6÷2)∶(8÷2)=3:4
6÷8=(6÷2)÷(8÷2)=3÷4
② 0.4:0.5=0.4÷0.5=0.8
0.4×5=2 0.5×5=2.5
2:2.5=2÷2.5=0.8
③ (3/4)÷(5/4)= (3/4)×(4/5)=3/5=0.6
3/4×(2/3)=1/2 4/5×(2/3)=5/6
1/2 :(5/6)=1/2×(5/6)=0.6
……
小组派代表说明验证过程,其他同学补充说明。
结论:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。(板书课题)
问:为什么0除外?(生自由回答)
这句话中你觉得哪些字比较重要?
相同的数可以是什么数?
不可以是什么数?
说一说:比的基本性质与商不变性质和分数的基本性质有什么联系和区别?
3、比的性质的应用
① 最简整数比
师:我们在学习分数的基本性质时,利用它化简分数,约分,通分,其实我们学习比的基本性质也可以用来化简比,把比化成最简整数比,知道什么是最简整数比吗?(生自由发言)
结论:最简整数比就是比的前项和后项都是整数,而且比的前项和后项的公因数是1,这就是最简整数比。
讨论:
怎样理解“最简单的整数比”这个概念?
小组里议一议。
师小结:
必须是一个比;前项、后项必须是整数,不能是分数或小数;前项与后项互质。
② 教学例1:化成最简整数比
课件出示例题,
写出这两面联合国旗的长和宽的比,并化成最简单的整数比。
课件出示例题的两面旗的图,
这两个比有什么关系呢?仔细观察,这两个比的前项,后项是怎么变化的,存在着怎样一个变化规律呢?
生独立解决,小组交流汇报方法。
15∶10
15 : 10=(15÷5):(10÷5)=3:2
想:5是15和10的什么数?为什么要除以5?
180 : 120=(15÷___):(10÷___)=3:2
想:除以什么呢?
这两个比的什么变了,什么没有变?
把下面的比化成最简单的整数比。
0.75:2 1/6 :2/9
三、巩固应用,内化提高
1、看谁的眼睛看得准?(根据比的基本性质判断下面各题)
2、 把下面各比化成最简单的整数比。
应用这个性质可以把一个比化成最简单的整数比?
(1).需要怎样做才能化成最简单的整数比?
(2).这样做到底有什么根据?
3、归纳化简比的方法:
(1) 整数比
——比的前后项都除以它们的最大公约数→最简比。
(2) 小数比
——比的前后项都扩大相同的倍数→整数比→最简比。
(3) 分数比
——比的前后项都乘它们分母的最小公倍数→整数比→最简比。
四、课堂小结
通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?
五、课后延伸:
有一个两位数,十位上的数和个位上的数的比是2:3。十位上的数加上2,就和个位上的数相等。这个两位数是多少?
板书设计:
比的基本性质
比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
人教版数学九年级上册教案篇五
教学目标
1.使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。
2.学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。
3.培养学生观察、分析、推理和概括的能力,发展学生的空间概念。
教学重难点
1 教学重点
会利用圆和其他已学的相关知识解决实际问题。
2 教学难点
圆与其他图形计算公式的混合使用。
教学工具
ppt 卡片
教学过程
1 复习巩固上节知识,导入新课
2 新知探究
2.1 圆环面积
一、问题引入
同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。
回答(略)。
今天我们就来做一做与光盘相关的数学问题。
二、圆环面积求解
例2.光盘的银色部分是一个圆环,内圆半径是50px,外圆半径是150px。圆环的面积是多少?
步骤:
师:求圆环面积需要先求什么?
生:内圆和外圆的面积
师:同学们可以自己做一做,分组交流一下自己的解法。
师:给出计算过程与结果:
三、知识应用
做一做第2题:
一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。
2.2 圆与正方形
一、问题引入
师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。
师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。
二、知识点
例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?
步骤:
师:题目中都告诉了我们什么?
生:左图圆的半径=正方形的边长的一半=1m;右图圆的面积=正方形对角线的一半=1m
师:分别要求的是什么?
生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。
师:应该怎么计算呢?
归纳总结
如果两个圆的半径都是r,结果又是怎样的呢?
当r=1时,与前面的结果完全一致。
四、知识应用
70页做一做:
下图是一面我国唐代外圆内方的铜镜。铜镜的直径是600px。外面的圆与内部的正方形之间的面积是多少?
师:同学们用我们刚刚学过的知识来解答一下这道题目吧。
解:铜镜的半径是300px
5.3 随堂练习
若还有足够时间,课堂练习练习十五第5/6/7题。
(可以邀请同学板书解题过程)
6 小结
1. 今天我们共同研究了什么?
今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。
2. 在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!
7 板书
例2解答步骤
<
推荐访问:上册 人教版 教案 人教版数学九年级上册教案(五篇) 2023年人教版数学九年级上册教案(五篇) 最新人教版九年级数学上册全册教案