2023分数乘法教案五篇【优秀范文】

时间:2023-08-13 18:40:02 来源:网友投稿

下面是小编为大家整理的2023分数乘法教案五篇【优秀范文】,供大家参考。

2023分数乘法教案五篇【优秀范文】

作为一名专为他人授业解惑的人民教师,总归要编写教案,借助教案可以更好地组织教学活动。写教案需要注意哪些格式呢?下面是小编精心为大家整理的5篇《分数乘法教案》,希望能为您的思路提供一些参考。

分数乘法教案 篇一

教学目标:

1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、培养学生大胆猜测,勇于实践的思维品质。

教学重点:

会进行分数的混合运算,运用运算定律进行简便计算。

教学难点:

灵活运用运算定律进行简便计算。

教具准备:

多媒体课件。

教学过程:

一、导入新课(激发兴趣,明确目标)

1、运算定律。

我们在四年级时学习过乘法的运算定律,同学们还记得吗?

(学生回答,教师板书运算定律)

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

2、这些运算定律有什么用处?你能举例说明吗?

25×7×4 0。36×101

(学生口述自己是怎样应用乘法的运算定律简算上面各题的。)

二、自主探究(自主学习,探讨问题)

1、引入

同学们应用乘法的运算定律,可以使整数、小数的一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。

(板书课题:整数乘法的运算定律能否推广到分数乘法)

2、推导运算定律是否适用于分数。

(1)学生发表对课题的见解。

(2)验证

有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(学生小组合作学习)

3、教学例5。

(1)出示:,学生小组合作独立解答。

4、教学例6。

(1)出示:,学生小组合作独立计算。

(2)小组汇报学习成果,说一说你们组应用了什么运算定律。

5、小结

应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。

三、拓展总结(应用拓展,盘点收获)

1、完成练习三的第6题。

学生说一说应用了什么运算

2、完成课本第10页的“做一做”题目。

其中第2题引导学生讨论解题思路,把87改成“86+1”应用乘法分配律计算比较简便。

教学重点。 篇二

使学生理解分数乘整数的意义及计算方法。

分数乘法教案 篇三

教学目标:

1、使学生通过自主探索,理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。

2、使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。

教学重点:

分数乘整数的意义和计算法则。

教学难点:

分数乘整数的计算方法以及算法的优化。

教学方法:

自主合作探究。

教具准备:

多媒体

教学过程:

一、复习引入

1、同学们,我们已经学会了分数的。加法和减法,下面口算。

2、今天我们来学习分数乘法。板书

谁能编一道分数乘法算式(择几道板书黑板一侧)

分数乘法有很多,今天先研究其中一种:分数乘整数。

看了今天的课题,可能有同学马上想知道分数乘法怎么算呢?其实,每一个新知识的产生都与原有的旧知密切相关,对于分数乘整数来说,当然也是如此。下面我们来讨论!

二、探究

1、理解意义。

出示例题1:做一朵绸花用 米绸带。

(1)小芳做了3朵这样的绸花,一共用了几分之几米绸带?

课件: + + =(米)

(2)小华做7朵这样的绸花,一共用了几分之几米绸带?

课件: + + + + + + =(米)

(3)学校庆国庆活动一共要做15朵这样的绸花,你能用加法计算出几分之几米绸带?

+ + + + + + + + + + + + + + =?

这么多米加起来,你有什么感觉?有没有什么好办法?有没有什么好办法?

导入:如果把这道加法算式改写成乘法,你特别需要知道什么?

板书: ×3= 7×= ×15=

谁能说说 ×3表示什么意思?7×呢?

前面大家所说的(黑板一侧板书的)乘法算式,谁能说说他们的意思?对比一下,你们觉得是分数加法简便,还是分数乘法简便?

2、探究算法。

现在我们来看分数乘整数怎样计算。我们先来研究×3, ×3=怎么算呢?请大家尝试解决。指名板演典型算法。

×3= =

×3=++=

……

交流:第二种按照加法计算,不简便,重点体会第二种和加法有着联系:×3=+ + = = = (教师板书),符合加法计算结果,是正确的,也是简便的。同时借助直观图观察验证。

练习:×7,与原来加法结果比较,完全正确。

谁能试着总结一下分数乘整数的计算方法:分母不变,分子和整数相乘,所得积做分子。

继续研究:×30

提示:这道题与前面几题相比可能有些新情况,你看出来了嘛?先试试看,再同桌交流。

指名板演新情况:都有相同点?(约分),不同是什么?(主要是约分的区别)

讨论:约分的先后序。(先乘后约,还是先约后乘),体会到先约后乘的简便。

练习:先判断可不可以约分?怎样约分?

总结注意事项:能约分的先约分再乘。

三、练习

填一填:练习第一、二题。

算一算:完成3第三、七题。

四、总结

本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

五、作业

练习八第2题、第4题。

分数乘法教案 篇四

教学目标

抓住分数应用题的核心倍数关系和等量对应,通过一例多用、一题多变,把各类应用题构成一个整体,帮助学生从本质上理解分数应用题的数量关系,提高学生的分析能力和解题能力.

教学过程

一、引入

根据条件列出对应关系.

1.青砖的块数比红砖多

2.青砖的块数比红砖少

3.红砖的块数比青砖多

4.红砖的块数比青砖少

上面各题哪一个量是单位1的量,占几份?另一个量所对应的分率是什么,占几份?

二、展开

(一)将上列各条件补充一个共同的条件和问题,出示例1.

红砖2100块 有青砖多少块?

1.学生独立解答;

2.大组交流;

3.列表归纳.

(二)出示例2

电视机厂今年生产电视机3600台,____________________,去年生产多少台?

1.根据已知的一个条件和问题,对照下列含有分率的条件,找出相应的式子.

(1)相当于去年的25%

(2)比去年少25%

(3)比去年多25%

(4)去年生产的是今年的25%

(5)去年比今年少25%

(6)去年比今年多25%

2.将应选择的条件填入下列各式后的括号内.

( )

( )

( )

( )

( )

( )

3.师生共同分析

(1)按照补充的条件,找相应的式子,如(1)相当于去年的25%.

分析:去年的生产量是单位1的量,占100份,今年的生产量相当于去年的25%,占25份,对应关系是:

去年的产量□100

今年的产量360025

设去年生产x台,得到的式子:

在第六个式子的括号里填(1).

(2)按照式子找应补充的条件.

如:

分析:100份与3600台相对应,也就是今年的生产量3600台是单位1的量,占100份,去年的生产量是未知数,比今年多25份,即去年比今年多25%.括号里应填(6).

三、巩固

(一)根据题意列式解答:

果园里有梨树168棵 苹果树有多少棵?

(二)机床厂现在制造一台机器的成本是1200元,比原来的成本降低25%.原来制造一

台机器要多少元?

(三)工厂去年生产换气扇6220台,今年比去年增产20%,今年计划生产多少台?

(四)某印染厂原来印花需要60人,制造自动印花机后,印花人数减少了40%,现在印花需要多少人?

教案点评

这节课所出现的分数两步应用题的。四种类型,在通常情况下是在几节课中出现,采用一例一类题的教学方法。这样的教法,学生学起来似乎轻松一些,但对数量关系的理解往往不够深刻。这节课摆脱了常规的教学方法抓住了分数应用题的核心倍数关系和量率对应,采用了一例多用,一题多变的教学方法,把四种题型构成一个整体,把分数所表示的两个量的倍数关系作为教材的基本结构,揭示数量的具体和抽象的矛盾,把分析具体的数量与抽象的数之间的关系作为基本的教学方法。这样,使学生能在较高的水平上来理解分数应用题的数量关系,既提高了教学质量,又减轻了负担。整节课的设计,体现了在简明的结构中包含较大的知识容量。简明的结构,主要指再生能力较强的基本结构。这节课把分数所表示的两个量的倍数关系作为基本结构。这样的结构,具有数量关系之间的联结和转换功能,具有认知结构的同化和调整功能,它必须包含较大的知识容量,能将所包含的内容统筹兼顾,有主有从。这种简便而大容量的知识结构,还为学生提供了多层次的训练材料,使不同认知水平的学生在原有基础上得到不同程度的提高。

分数乘法教案 篇五

教学内容:

教材第7-9页“分数乘法”(三)

教学目标:

1、通过学生的动手操作,借助图形语言,理解分数乘法的www..com意义和分数乘以分数的算理,掌握计算方法,并能熟练地进行计算;

2、让学生经历猜想、验证等过程,体验数学研究的方法;

3、培养逻辑推理能力,渗透一定的数学思维方法。

教学重难点:

学生能够熟练的计算出分数乘以分数的结果。

教学过程:

一、创设情境激趣揭题

1、出示我国古代哲学著作的情景。

2、出示复习题

3×2/5 4/5×2

3、顺势导入新课:分数乘法(三)

二、扶放结合探究新知

1、画图引导学生理解1/2*1/2的算例。

2、出示3/4*1/4引导学生验证上面的计算方法,岩石推理过程。

3、出示2/3*1/5, 5/6*2/3写出计算过程,小结计算方法:

分子乘分子,分母乘分母。

三、反馈矫正落实双基

1、出示教材第8页试一试1-3题。

2、引导学生发现规律。

四、小结评价布置预习

1、引导学生进行课堂小结。

2、布置预习:教材10-11页练习一。

板书设计

分数乘法(三)

意义:求一个数的几分之几是多少?

计算法则:分子乘分子作分子,分母乘分母作分母。

以上就是为大家带来的5篇《分数乘法教案》,希望可以启发您的一些写作思路。

推荐访问:乘法 教案 分数 分数乘法教案五篇 分数乘法教案 分数乘法教案六年级上册人教版