2023数学教学计划高一12篇(完整文档)

时间:2023-09-04 19:55:02 来源:网友投稿

数学教学计划高一第1篇本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作下面是小编为大家整理的数学教学计划高一12篇,供大家参考。

数学教学计划高一12篇

数学教学计划高一 第1篇

本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;
部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了必须的难度,为把本学期教学工作做好,制定如下教学工作计划。

一、指导思想

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。透过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本潜力。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的潜力,数学表达和交流的潜力,发展独立获取数学知识的潜力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出决定。

5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。

6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学好处,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教学目标

(一)情意目标

(1)透过分析问题的方法的教学,培养学生的学习的兴趣。

(2)带给生活背景,透过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维潜力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

(二)潜力要求

1、培养学生记忆潜力。

(1)透过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)透过揭示立体**、函数、数列有关概念、公式和图形的对应关系,培养记忆潜力。

2、培养学生的运算潜力。

(1)透过概率的训练,培养学生的运算潜力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算潜力。

(3)透过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性潜力。

(4)透过一题多解、一题多变培养正确、迅速与合理、灵活的运算潜力,促使知识间的透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算潜力。

数学教学计划高一 第2篇

本节课的教学内容,是指数函数的概念、性质及其简单应用。教学重点是指数函数的图像与性质。

I、这是指数函数在本章的位置。

指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数。它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践。指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础。因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程。

指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义。

Ⅱ、教学目标设置

1、学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念。

2、学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小。

3、学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法。

4、在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力。

Ⅲ、学生学情分析

授课班级学生为南京师大附中实验班学生。

1、学生已有认知基础

学生已经学习了函数的概念、图象与性质,对函数有了初步的认识。学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力。学生已有研究一次函数、二次函数等初等函数的直接经验。学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯。

2、达成目标所需要的认知基础

学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力。

3、难点及突破策略

难点:

1、对研究函数的一般方法的认识。

2、 自主选择底数不当导致归纳所得结论片面。

突破策略:

1、教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段。

2、组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思。

3、对猜想进行适当地证明或说明,合情推理与演绎推理相结合。

Ⅳ、教学策略设计

根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式。通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段。

学生的自主学习,具体落实在三个环节:

(1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念。

(2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升。

(3)性质应用阶段,学生自主举例说明指数函数性质的应用。

研究函数的性质,可以从形和数两个方面展开。从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明。

Ⅴ、教学过程设计

1、创设情境建构概念

师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系。你能用函数的观点分析下面的例子吗?

师:大家知道细胞分裂的规律吗?(出示情境问题)

[情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?

[情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%。如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?

[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0.84x。

师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?

〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?

[设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系。引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示。初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构。指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0。a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义。为了使指数函数与对数函数能构成反函数,规定a≠1。此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”。

[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax。

[教学预设]学生能举出具体的例子——y=3x,y=0.5x…如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现。进而提出这类函数一般形式y=ax。

Ⅵ、教后反思回顾

一、对于指数函数概念的认识

指数函数是一种函数模型,其基本特征是自变量在指数位置。底数取值范围有规定,使得这一模型形式简单又不失本质。不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想。

二、对于培养学生思维习惯的考虑

在学生自主探索的过程中,教师应注意培养学生良好的思维习惯。实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯。对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明。学生不仅学到了数学知识,也初步体验了研究问题的基本方法。

三、关于设计定位的反思

本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略。如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见吗?为什么”等问话形式,促使学生暴露思维过程。

数学教学计划高一 第3篇

一、教学内容

本学期将完成“《数学①》必修”和“《数学④》必修” (人民教育出版社教A版)的学习,教学辅助材料有《三维设计》和自愿订阅学习方法报部分单元练习及学法指导阅读材料。二、教学目标与要求

(一)前半期完成《数学①》主要涉及三章内容:

第一章集合与函数的概念(约13学时)

通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;

2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

3.理解补集的含义,会求在给定集合中某个集合的补集;

4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

5.渗透数形结合、分类讨论等数学思想方法;

6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

第二章函数的概念与基本初等函数Ⅰ(约14学时)

教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的"工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。

1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;

2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;

3.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

4.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

第三章函数的应用(约9学时)

结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系。

1、结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

2、根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

3、利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

4、收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

(二)后半期完成《数学④》主要涉及三章内容:

第一章三角函数(约16学时)

通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

1.了解任意角的概念和弧度制;

2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

3.了解三角函数的周期性;

4.掌握三角函数的图像与性质。

第二章平面向量(约12学时)

在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

1.理解平面向量的概念及其表示;

2.掌握平面向量的加法、减法和向量数乘的运算;

3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

第三章三角恒等变换(约8学时)

通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。

1.掌握两角和与差的余弦、正弦、正切公式;

2.掌握二倍角的正弦、余弦、正切公式;

3.能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。

三、教学常规要求及建议(要点)

根据学校对教师的常规要求,结合本备课组实际,拟提出以下几点建议,望老师们自觉执行,落实教学各个环节,不拉同行的后腿,力求各班级之间平均分的差距达到学校要求。

1、做好传、帮、带工作,达到学校教务处要求。本组新分1青年教师,中二1人、中一教师2人,高级教师4人,在学校要求参加集体听课、交流的教研活动之外,组内教师之间不定时地听随堂课并交流不少于听课总数的半。

2、集体参加组内专题备课2—3次,每次中心发言人应有发言材料准备,其他教师补充发言记录。

3、教师每周全收、批学生作业次数不低于上课总节数的五分之三(正常上课没周收改作业至少3次。

3、每节课应有教学目标、重点,突出解决的问题和方法、过程。

4、做好教学反思(每周至少有一次)

数学教学计划高一 第4篇

一、学生状况分析

学生整体水平一般,成绩以中等为主,中上不多,后进生也有一些。几个班中,从上课一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。

二、教材简析

使用人教版《普通高中课程标准实验教科书?数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(**与函数概念;
基本初等函数;
函数的应用);
必修2有四章(空间几何体;
点线平面间的位置关系;
直线与方程;
圆与方程)。

三、教学任务

本期授课内容为必修1和必修2,必修1在期中考试前完成(约在11月5日前完成);
必修2在期末考试前完成(约在12月31日前完成)。

四、教学质量目标

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

2、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

五、促进目标达成的重点工作及措施

重点工作:

认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。

分层推进措施

1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;
注意运用对比的方法,反复比较相近的概念;
注意结合直观图形,说明抽象的知识;
注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;
加强复习检查工作;
抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。

6、重视数学应用意识及应用能力的培养。

数学教学计划高一 第5篇

一.基本情况分析:

学生情况分析:4个重点班的学生,基础比较好,学习积极性高.普通班学生在基础、学习习惯、学习自觉性等方面都有一定差距,因此在教学中需时时提醒学生,培养其自觉性。学生存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于强化基础知识,培养学生的计算能力,提高思维能力,争取每堂课教学一个知识点,掌握一个知识点。

教材分析:本学期时间短,教学任务是必修4第二章,必修5,必修2涉及平面向量,解三角形,数列,空间几何体,点,线面的位置关系,直线与方程,圆与方程。

二.工作要点及措施

1、教案学案一体化继续探索适合我校学生实际的课堂教学模式,为发挥学生的主体作用,切实提高课堂效率,本学期推行三图四化的使用,基本操作办法是,提前一天把学案发给学生,让学生课前预习,即先自主学习,在课堂上,让学生充分活动,在教师的问题引导下,积极思考,同学之间认真讨论,确定问题的解决的方法途径和结论,教师在课堂上做好问题的引导和问题的变式,想方设法的激励学生思考问题,在学生回答问题后对学生进行肯定和鼓励。

三图四化工厂的设计

组内成员先自行设计出学案初稿,然后经备课组全体成员集体教研、讨论,确定学案的定稿。由于课型不同,学案的环节也相应存在着不同,但每个学案都应包括学习目标、学习重点、导学问题、学法指导、达标训练等环节,在设计中要把握问题的难度,在操作中低重心运行,为保证高考升学取得大面积丰收,教学要面向全体学生,教学要求要低一些,让后进生能接受,调动他们的学习积极性,促进后进生的转变,由此来督促中上等学生的学习。

(1)学习目标的制定。学习目标要明确,学生能一目了然,切忌学习目标过多,让学生在课堂的开始就引起消极情绪。

(2)导学问题的设计。导学问题的设计不是把课本所学知识变成问题然后简单逻列,而是根据教材的特点,学生的实际水平能力,联系社会现实问题,设计成不同层次的问题。问题的设计和问题的形式灵活多样,可以是问题式、简答式等等,根据学习内容的不同采用不同的形式。

(3)学法指导。

学法指导也就是学习方法、活动方式的指导及疑难问题的提示等。学生对每节课知识掌握的如何,学习方法的指导起到了关键作用。本环节的目的是让学生在平时的学习过程中随时掌握解决问题的方法,逐步由学会变为会学。

(4)达标训练的设计。为了使学到的知识及时得到巩固、消化和吸收,进而转化为能力,要精心设计有阶梯性、层次性的达标训练,要注意此环节应面向全体学生,发展各类学生的潜能,让每个学生在每节课后都有收获,都有成就感。

2、集体备课我们要克服以往集体备课中存在的问题,真正提高说课质量,使集体备课对每位教师尤其是新教师起到有效的指导和帮助作用,将集体备课落到实处。具体做法如下:

(1)提前确定教学进度、中心发言人(详情见附表)及说课时间(每周五下午6、7节)。

(2)中心发言人针对本年级学生实际情况,精心设计课堂结构,精选例题和作业,设计好学案,可以适当多选些题目,文科生在此基础上可进行适当删改(本学期在教学内容上文理没有什么差别),要注意低起点、多重复。说课时,要说透教材、教法、教学重点和难点,例题要说明选题意图,要有详细的解题过程、注意事项等,特别要在教学方法的改进上多下功夫,要从学生现有的认知水平出发,设想学生可能出现的种种问题及应对措施。作业要有针对性,层次性,既巩固课上的知识点、题型,又要有一定的思维延展性,使文理科的学生在作业上有一定的区分度,使学有余力的学生有一个锻炼、培养思维能力的平台。

(3)每位教师在说课前都要做好准备,认真研究教材教法知道要说的是什么内容,包括哪些基础知识和基本题型,了解本部分内容涉及的数学思想方法,做完说课稿上的例题、习题、作业,对例题的讲解和其中蕴含的数学思想和解题技巧、计算技巧形成一个明确的认识,并写好初备提纲,以备说课时作出必要的补充和自己的见解。每位教师可以对说课稿进行补充,也可就初备中发现的问题提问,然后全组教师进行交流,以改进教法、增删例题和作业,使说课稿更加完善和实用。

3、集体听评课为提高每位教师的教育教学水平,依据学校教学计划,青年教师每周听课1节,其他教师月至少2节。每周进行一次集体听评课活动(详情见附表)。评课时不仅要说优点,更要说不足和遗憾,提出意见和建议。当局者迷,这样做有利于授课教师认清自身存在的问题,以改进教学,这也是对授课教师负责任的一种表现。通过评他人的课,对比查找自己存在的问题,有利于改进教学。

4、教案:要写明教学时间、课题、教学重点难点、教学方法、教学过程等。集体说课后,每位教师都要结合本班学生实际情况,精心设计课堂45分钟应如何分配到各个教学环节,要提问什么问题,提问谁,例题怎样分析,渗透什么思想方法。教学过程要有复习回顾、导入设计、师生活动、例题的分析、作业设计与小结等。每位教师上完课之后都要思考两个问题:我这节课上得如何?怎样上这节课更好、最好?并结合课堂上出现的各种情况,认真写好教学反思,或总结经验,或反思失误,或记录灵感,为今后教学和科研工作积累最实用的资料。

5、上课要重视三图四化的应用,要用好学案,设计整个课堂的教学环节;

(1)我们要率先遵守课堂常规,及时到位候课,提醒学生做好上课的准备。上课过程中,语言要简洁生动,板书、解题、作图要规范严谨,不要出现知识性错误。身教胜于言教,我们怎样要求学生,就应比他们做地更好,用自身的行动为学生作好示范。

(2)把主动权交给学生,多作主持人,少当播音员。学生能做的事,就交给学生做,不要好心办坏事。但必须指出,对于学生理解有困难、易混、易错的知识和题目,一定要多讲、讲透,千万不要为了形式上的留时间、留空间造成学生在知识和方法上出现漏洞。

(3)针对学生存在的问题,继续加强对学生学习习惯的培养,包括如何记笔记,记什么;培养先复习再做作业的习惯;独立思考的习惯;遇到困难查教材、查笔记的习惯等。

6、作业批改批改作业前,全组成员要校对答案,汇总解题方法。批改作业的基本要求是全批全改、及时准确。对错误较多的题目,认真分析原因,集中讲评,并督促他们改正;对学生书写、计算、作业整理方面存在的问题,要进行学法指导;认真书写评语,既要指出问题,又要多些鼓励

7、坐班:全组教师严格遵守学校的坐班纪律,保持办公室的安静,搞好办公室的卫生,责任到人,全组教师共同努力,创设良好的办公环境,提高干事的效率。

数学教学计划高一 第6篇

一 设计思想:

函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。

二 教学内容分析:

本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94—95页的第三章第一课时3。1。1方程的根与函数的的零点。

本节通过对二次函数的图象的"研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3。1。2)加以应用,通过建立函数模型以及模型的求解(3。2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。

总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

三 教学目标分析:

知识与技能:

1。结合方程根的几何意义,理解函数零点的定义;

2。结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

3。结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法

情感、态度与价值观:

1。让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

2。培养学生锲而不舍的探索精神和严密思考的良好学习习惯;

3。使学生感受学习、探索发现的乐趣与成功感

教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。

教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。

四 教学准备

导学案,自主探究,合作学习,电子交互白板。

五 教学过程设计:略

六、探索研究(可根据时间和学生对知识的接受程度适当调整)

讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?

[师生互动]

师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。

生:分组讨论,各抒己见。在探究学习中得到数学能力的提高

第五阶段设计意图:

一是为用二分法求方程的近似解做准备

二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。

七、课堂小结:

零点概念

零点存在性的判断

零点存在性定理的应用注意点:零点个数判断以及方程根所在区间

八、巩固练习(略)

小编为大家提供的高一上学期数学教学计划格式,大家仔细阅读了吗?最后祝同学们学习进步。

数学教学计划高一 第7篇

一、指导思想

以发展教育的理念为指引,以学校教务处、教研组、年级组工作计划为指南,加强备课组教师的教育教学理论学习,更新教学观念,落实教学常规,全面提高学生的数学能力,尤其是提高创新意识和实践能力,为社会培养创造型人才。

二、工作目标

1、全组成员精诚团结,互相学习,取长补短,力争使我们高一数学备课组组成为一个优秀集体。

2、规定集体备课的时间(单周二上午第三节),分工协作,加强研讨,统一助学案,**学进度,每周一练,又要根据本班的学情进行复备。

3、积极参与备课组的教学资源的建设,丰富博客内容,鼓励每位教师就自己在教学中的经验、体会或教训,及时总结。

三、学情分析

1—2班属普高班,3—8班属综合重点班,学习情况在整个年段较好,大部分学生基础相比较较扎实,上个学期,学生自觉性较好,自我控制力强,但部分学生上进心仍然不太强,缺少紧迫感,自我约束和自我提高能力有待加强,并且课堂内容除了基础,也要注重能力培养,适当增加难度,向高考看齐。

11—17班属综合普通班,学习情况一般,课堂主体性差,自我控制能力较弱,因此在教学中需时时提醒学生,培养其自觉性,9班园艺班,10班计算机班,学习情况一般,学生学习自觉性差,会出现各种各样的**行为。经过一个学期的锻炼,各班数学计算能力有一定的提高,基本能脱离计算器,但很多学生偏科严重,上课走神,说话,睡觉,作业不按时按质完成,学习数学的积极性,主动性较差。所以在以后的教学中,重点在于培养学生学习数学的兴趣,增强课堂的趣味性,教师上课照顾到全部学生。同时普通班和3+2班,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

四、具体工作和措施

1、认真学习教学大纲和钻研教材教法,把握好教材的广度、深度和难度。

2、积极进行集体备课,为了能够将集体备课落实到实处,集体备课做到统一时间,统一地点。

3、、抓好每次备课组活动。遵守会议制度,活动目标明确,重点突出,形式多样,确定专题发言人,能提前准备好教案,活动能充分讨论,取长补短,做好记录。

4、本组教师年轻化程度高,因此要加大新课标的学习力度,通过备课组学习,集体讨论,个人学习为主,要求每人在学期末能撰写一篇论文或案例,使每位教师由教学型向研究型迈进。

5、落实新老教师的传、帮、带工作,师徒结对,促进全体教师共同成长。

6、抓好初中与高中数学基础知识、基本技能和基本数学方法的衔接教学,使知识系统化、网络化,牢固打好数学基础。

7、课堂教学要多些师生互动,活跃课堂气氛,教学中要注重渗透数学思想方法和数学双基的教学。

8、教学中要注重:

(1)强化思维过程,努力提高学生的理性思维能力;

(2)增强实践意识、重视探究和应用;

(3)倡导主动学习,营造自主探索和应用:教师要善于从教材实际和社会生活中提出问题,开设研究性课题,让学生自主学习讨论交流,在解决问题中激发兴趣、树立信心,培养钻研精神,提高数学表达能力和数学交流能力;

9、贯彻落实教学常规,作业全批全改,在作业上写好激励性的评语。

10、精讲精练,落实单元过关测试,教师要全批全改,及时认真讲评。并做好试卷补偿练习,单元卷由备课组成员轮流负责,做到侧重知识点的覆盖,难度控制(不可太难);

11、加强尖子生的培养和后进生的转化工作。做好尖子生的培养工作及所有学生的学习情况跟踪工作,争取不让学生掉队,认真做好因材施教,积极探讨“分层教学”的教学方法;

12、指导学生尽快适应高、初中过渡阶段的学习,教学时应注意高、初中知识的衔接,并对学生进行学法指导。

13、尽快了解学生的数学的基本情况,进一步培养好学生学习数学的兴趣。

14、做好教情学情的调查,及时调整教与学,制定好研究性课题,组织本备课组教师做好学生的指导工作。

数学教学计划高一 第8篇

一、内容及其解析

1。内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线。本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线。

2。解析:直线方程属于解析几何的基础知识,是研究解析几何的开始。从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题。从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义。从本节来看,学生对直线既是熟悉的,又是陌生的。熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程。直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。

二、目标及其解析

1。目标

掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。

2。解析

①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。知道建立直线方程就是将确定直线的几何要素用代数形式表示出来。

②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率。

③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想。

④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想。

⑤在建立直线方程的过程中,体会数形结合思想。在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想。

三、教学问题诊断分析

1。学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别。

2。学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做。因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算研究几何图形性质。

3。由于学生没有学习曲线与方程,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的。这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的。

四、教法与学法分析

1、教法分析

新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。本节课可采用启发式问题教学法教学。通过问题串,启发学生自主探究来达到对知识的发现和接受。通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神。并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法。

2、学法分析

改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的再创造的过程。为学生形成积极主动的、多样的学习方式创造有利的条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。

通过直线的点斜式方程的推导,加深对用坐标求方程的理解;
通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;
通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃。让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力。

五、教学过程设计

问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?

[设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。

问题2:建立直线方程的实质是什么?

[设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来。也就是将直线上点的坐标满足的条件用方程表示出来。

引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件?

[设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤。

问题2。1要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系?

(过与两点的直线的斜率为)

[设计意图]让学生寻找确定直线的条件,体会动中找静。

问题2。2如何将上述条件用代数形式表示出来?

[设计意图]让学生理解和体会用坐标表示确定直线的条件。

用代数式表示出来就是,即。

问题2。3为什么说是满足条件的直线方程?

[设计意图]让学生初步感受直线与直线方程的关系。

此时的坐标也满足此方程。所以当点在直线上运动时,其坐标满足。

另外以方程的解为坐标的点也在直线上。

所以我们得到经过点,斜率为的直线方程是。

问题2。4:能否说方程是经过,斜率为的直线方程?

[设计意图]让学生初步感受直线(曲线)方程的完备性。尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔。

问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程?

[设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力。

问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?

[设计意图]引导学生掌握解析几何取点的方法。

引导学生求出直线的点斜式方程

注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。

问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗?

[设计意图]让学生初步感受解析几何求曲线方程的步骤。

①设点———用表示曲线上任一点的坐标;

②寻找条件————写出适合条件;

③列出方程————用坐标表示条件,列出方程

④化简———化方程为最简形式;

⑤证明————证明以化简后的方程的解为坐标的点都是曲线上的点。

例1分别求经过点,且满足下列条件的直线的方程,并画出直线。

⑴倾斜角

⑵斜率

⑶与轴平行;

⑷与轴平行。

[设计意图]让学生掌握直线的点斜式的使用条件,把直线的点斜式方程作公式用,让学生熟练掌握直线的点斜式方程,并理解直线的点斜式方程使用条件。

注:⑴应用直线的点斜式方程的条件是:①定点,②斜率存在,即直线的倾斜角。

⑵与的区别。后者表示过,且斜率为k的直线方程,而前者不包括。

⑶当直线的倾斜角时,直线的斜率,直线方程是。

⑷当直线的倾斜角时,此时不能直线的点斜式方程表示直线,直线方程是。

练习:1。。

2。已知直线的方程是,则直线的斜率为,倾斜角为,这条直线经过的一个已知点为。

[设计意图]在直线的点斜式方程的逆用过程中,进一步体会和理解直线的点斜式方程。

问题6:特别地,如果直线的斜率为,且与轴的交点坐标为(0,b),求直线的方程。

[设计意图]由一般到特殊,培养学生的推理能力,同时引出截距的概念和直线斜截式方程。

将斜率与定点代入点斜式直线方程可得:

说明:我们把直线与y轴交点(0,b)的纵坐标b叫做直线在y轴上的截距。这个方程是由直线的斜率与它在y轴上的截距b确定,所以叫做直线的斜截式方程。

注(1)截距可取任意实数,它不同于距离。直线在轴上截距的是。

(2)斜截式方程中的k和b有明显的几何意义。

(3)斜截式方程的使用范围和斜截式一样。

问题7:直线的斜截式方程与我们学过的一次函数的类似。我们知道,一次函数的图像是一条直线。你如何从直线方程的角度认识一次函数?一次函数中k和b的几何意义是什么?

[设计意图]让学生理解直线方程与一次函数的区别与联系,进一步理解解析几何的实质。函数图像是以形助数,而解析几何是以数论形。

练习:1。。

2。直线的斜率为2,在轴上的截距为,求直线的方程。

[设计意图]让学生明确截距的含义。

3。直线过点,它的斜率与直线的斜率相等,求直线的方程。

[设计意图]让学生进一步理解直线斜截式方程的结构特征。

4。已知直线过两点和,求直线的方程。

[设计意图]让学生能合理选择直线方程的不同形式求直线方程,同时为下节学习直线的两点式方程埋下伏笔。

例2:已知直线,试讨论

(1)与平行的条件是什么?

(2)与重合的条件是什么?

(3)与垂直的条件是什么?

说明:①平行、重合、垂直都是几何上位置关系,如何用代数的数量关系来刻画。

②教学中从两个方面来说明,若两直线平行,则且反过来,若且,则两直线平行。

③若直线的"斜率不存在,与之平行、垂直的条件分别是什么?

练习:

问题8:本节课你有哪些收获?

要点:

(1)直线方程的点斜式、斜截式的命名都是顾名思义的,要会加以区别。

(2)两种形式的方程要在熟记的基础上灵活运用。

总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。

数学教学计划高一 第9篇

本学期担任高一x1、x2两班的数学教学工作,两班学生共有xx人,初中的基础参差不齐,但两个班的学生整体水平较高;
部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

一、教学目标

(一)情意目标

(1)通过分析问题的方法的教学,培养学生的学习的兴趣。

(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验"发现--挫折--矛盾--顿悟--新的发现"这一科学发现历程法。

(二)能力要求

1、培养学生记忆能力。

(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。

2、培养学生的运算能力。

(1)通过概率的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的渗透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

3、培养学生的思维能力。

(1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。

(2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。

(3)通过不等式、函数的引伸、推广,培养学生的创造性思维。

(4)加强知识的横向联系,培养学生的数形结合的能力。

(5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

(三)知识目标

1.集合、简易逻辑

(1)理解集合、子集、补订、交集、交集的概念。了解空集和全集的意义。了解属于、包含、相等关系的意义。掌握有关的术语和符号,并会用它们正确表示一些简单的集合。

(2)理解逻辑联结词"或"、"且"、"非"的含义。理解四种命题及其相互关系。掌握充分条件、必要条件及充要条件的意义。

(3)掌握一元二次不等式、绝对值不等式的解法。

2.函数

(1)了解映射的概念,理解函数的概念。

(2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法。

(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。

(4)理解分数指数幂的概念,掌握有理指数幂的运算性质。掌握指数函数的概念、图像和性质。

(5)理解对数的概念,掌握对数的运算性质。掌握对数函数的概念、图像和性质。

(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。

3.数列

(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。

(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。

二、教学重点

1、集合、子集、补集、交集、并集。一元二次不等式的解法四种命题。充分条件和必要条件。

2、映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用。

3、等差数列及其通项公式。等差数列前n项和公式。

等比数列及其通项公式。等比数列前n项和公式。

三、教学难点

1.四种命题。充分条件和必要条件

2.反函数、指数函数、对数函数

3.等差、等比数列的性质

四、工作措施

1、抓好课堂教学,提高教学效益。

课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

(1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。

(2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过"知识的产生,发展",逐步形成知识体系;
通过"知识质疑、展活"迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

2、加强课外辅导,提高竞争能力。

课外辅导是课堂的有力补充,是提高数学成绩的有力手段。

(1)加强数学数学竞赛的指导,提高学习兴趣。

(2)加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一城楼。

(2)、加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别加集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。

3、搞好单元考试、阶段性考试的分析。

学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。

五、目标承诺

1、及格率不低于98%。

2、人平比年级平均高15分以上。

数学教学计划高一 第10篇

一、学情分析

我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的A版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上进取创新,充分体现了数学的美学价值和人文精神。我校是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。

二、教材分析

本教材有下列几个特点:

1、更加注重强调数学知识的实际背景和应用,使教材具有很强的“亲和力”,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,使学生兴趣盎然地投入学习。

2、以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都能够看到“观察”“思考”“探索”以及用“问号性”图标呈现的“边空”等栏目,利用这些栏目,在知识形过过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。

3、信息技术是一种强有力的认识工具,在教材的编写过程体现了进取探索数学课程与信息技术的整合,帮忙学生利用信息技术的力量,对数学的本质作进一步的理解。

4、关注学生数学发展的不一样需求,为不一样学生供给不一样的发展空间,促进学生个性和潜能的发展供给了很好的平台。例如教材经过设置“观察与猜想”、“阅读与思考”、“探究与发现”等栏目,一方面为学生供给了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化提高中的作用。

5、新教材注重数学史渗透,异常是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。

三、教学任务与目的

1、了解**的含义与表示,理解**间的关系和运算,感受**语言的意义和作用。进一步体会函数是描述变量之间的依靠关系的重要数学模型,会用**与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不一样需要选择恰当的方法表示函数。

经过已学过的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。

2、了解指数函数模型的实际背景。理解有理指数幂的含义,经过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。

理解对数的概念及其运算性质,明白用换底公式能将一般对数转化成自然对数或常用对数;
经过阅读材料,了解对数的发现历史以及对简化运算的作用。经过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;
能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。明白指数函数y=ax与对数函数y=logax互为反函数(a》0,a≠1)。经过实例,了解幂函数的概念;
结合函数y=x,y=x2,y=x3,y=1x,y=x12的图象,了解它们的变化情景。

3、结合二次函数的图象,确定一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系、根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法、利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;
结合实例体会直线上升、指数爆炸、对数增长等不一样函数类型增长的含义、收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。

4、利用实物模型、计算机软件观察很多空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。

经过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不一样表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

5以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。经过对很多图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维本事,并用来解决一些简单的推理论证及应用问题、

6、在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。

根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

四、教学措施和活动

1、加强团体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。

2、注重培养学生自主学习的本事,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和本事。改善学生的学习方式是高中数学新课程追求的基本理念。

3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率。

4、与学生多沟通、多交流,真正成为学生的良师益友。

5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。

数学教学计划高一 第11篇

一、指导思想

准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

二、高一上册数学教学教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借签、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有如下特点:

1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情.

2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神.

3.科学性与思想性:通过不同数学内容的联系与启发,强调类比、化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神.

4.时代性与应用性:以具有时代感和现实感的素材创设情境,加强数学活动,发展应用意识.

三、高一上册数学教学教法分析:

1.选取与内容密切相关的、典型的、丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的.

2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式.

3.在教学中强调类比、化归等数学思想方法,尽可能养成其逻辑思维的习惯.

四、学情分析

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着.他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长.面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的"各个环节,才能不负众望.我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡.从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法.

五、高一上册数学教学教学措施:

1、激发学生的学习兴趣.由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考.

3、加强培养学生的逻辑思维能力和解决实际问题的能力,提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育.

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力.

5、重视数学应用意识及应用能力的培养.

数学教学计划高一 第12篇

一、基本情况分析:

1.学生情况分析:4个重点班的学生,基础比较好,学习积极性高.普通班学生在基础、学习习惯、学习自觉性等方面都有一定差距,因此在教学中需时时提醒学生,培养其自觉性。学生存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于强化基础知识,培养学生的计算能力,提高思维能力,争取每堂课教学一个知识点,掌握一个知识点。

2.教材分析:本学期时间短,教学任务是必修4第二章,必修5,必修2涉及平面向量,解三角形,数列,空间几何体,点,线面的位置关系,直线与方程,圆与方程。

二、教学内容:

本学期的数学教学内容是高一数学下册,包括第四章《三角函数》和第五章《平面向量》。按照数学教学大纲的要求,第四章教学需要36个课时(不包含考试与测验的时间);第五章的教学需要22个课时,共计需要58个课时。本学期有两次月考和五一长假,实际授课时间为18周,按每周6课时计算,数学课时达到110课时左右,时间相当充足。这为我们数学组全面贯彻“低切入、慢节奏”的教学方针提供了保障,也是我们提高学生数学水平的又一次极好的机会。

三、本学期教学目标

在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。

能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。

培养学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。

四、教学计划

本学期的期中考试(预计在4月14号至4月17号进行)涵盖的内容为第四章的前9节,由于课时量充足,第10节“正切函数的图像和性质”以及第11节“已知三角函数值求角”将在上半学期讲授,这样下半个学期的教学任务为30个课时。

我们备课组经过认真的思索、充分的讨论,将期中考试前的教学进度安排如下:

(一单元)任意角的三角函数

4.1角的概念的推广3课时

4.2弧度制3课时

4.3任意角的三角函数3~4课时

4.4同角三角函数的基本关系4课时

4.5正弦、余弦的诱导公式4课时

复习课(习题课) 4课时

单元测试及讲评2课时

(二单元)两角和与差的三角函数

4.6两角和与差的正弦、余弦、正切7课时

习题课3课时

4.7两倍角的正弦、余弦、正切4课时

习题课2课时

单元测试及讲评2课时

(三单元)三角函数的图象及性质

4.8正弦、余弦函数的图象和性质5课时

习题课2课时

4.9函数的图象4课时总计授课53课时,余下课时可安排期中复习。

期中考试后的授课计划:

4.10正切函数的图象和性质3课时

4.11已知三角函数值求角4课时

习题课2课时

第四章复习4课时

第五章

(一单元)向量及其运算

5.1向量1课时

5.2向量的加减法2课时

推荐访问:高一 数学教学 计划 数学教学计划高一12篇 数学教学计划高一(通用12篇) 高一数学教学计划范文